2017 中国大学生程序设计竞赛 女生专场 Building Shops (hdu6024)

Building Shops

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

Problem Description
HDU’s n classrooms are on a line ,which can be considered as a number line. Each classroom has a coordinate. Now Little Q wants to build several candy shops in these n classrooms.

The total cost consists of two parts. Building a candy shop at classroom i would have some cost ci. For every classroom P without any candy shop, then the distance between P and the rightmost classroom with a candy shop on P's left side would be included in the cost too. Obviously, if there is a classroom without any candy shop, there must be a candy shop on its left side.

Now Little Q wants to know how to build the candy shops with the minimal cost. Please write a program to help him.
 

 

Input
The input contains several test cases, no more than 10 test cases.
In each test case, the first line contains an integer n(1n3000), denoting the number of the classrooms.
In the following n lines, each line contains two integers xi,ci(109xi,ci109), denoting the coordinate of the i-th classroom and the cost of building a candy shop in it.
There are no two classrooms having same coordinate.
 

 

Output
For each test case, print a single line containing an integer, denoting the minimal cost.
 

 

Sample Input
3
1 2
2 3
3 4
4
1 7
3 1
5 10
6 1
 
Sample Output
5
11
 
dp[i]代表最后一个商店建在i的最小花费。当前状态是会影响后面的状态的,所以通过前面的状态进行更新是最好的选择.
所以就有dp[i]可以通过比i小的所有方案进行更新
dp[i]=dp[j]+save[i].cost-(n-i+1)*(save[i].pos-save[j].pos);
复制代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<iostream>
#include<queue>
#include<map>
#include<cmath>
#include<set>
#include<stack>
#define ll long long
#define max(x,y) (x)>(y)?(x):(y)
#define min(x,y) (x)>(y)?(y):(x)
#define cls(name,x) memset(name,x,sizeof(name))
using namespace std;
const int inf=1<<28;
const int maxn=3010;
const int maxm=110;
const int mod=1e9+7;
const double pi=acos(-1.0);
ll n;
struct node
{
    ll pos,cost;
    bool friend operator<(node a,node b)
    {
        return a.pos<b.pos;
    }
}save[maxn];
ll dp[maxn];
int main()
{
    //freopen("in1002.txt","r",stdin);
    while(~scanf("%lld",&n))
    {
        for(ll i=1;i<=n;i++)
            scanf("%lld %lld",&save[i].pos,&save[i].cost);
        sort(save+1,save+n+1);
        dp[1]=save[1].cost;
        for(ll i=2;i<=n;i++)
            dp[1]+=(save[i].pos-save[1].pos);
        //dp[i]表示最后一个商店建在i的最小花费
        for(ll i=2;i<=n;i++)
        {
            for(ll j=1;j<i;j++)
            {
                if(j==1)
                dp[i]=dp[j]+save[i].cost-(n-i+1)*(save[i].pos-save[j].pos);
                else
                dp[i]=min(dp[i],dp[j]+save[i].cost-(n-i+1)*(save[i].pos-save[j].pos));
            }
        }
        ll ans=dp[1];
        for(ll i=1;i<=n;i++)
            ans=min(ans,dp[i]);
        printf("%lld\n",ans);
    }
    return 0;
}
复制代码

 

 /***2017.7.11更新***/
前不久学到了斜率优化,今天想起来这题可以用到,结果居然优化到了时间排名第一了,真是惊喜呀!

 

等有时间再讲讲斜率优化,就先把代码贴出来吧。
 
复制代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<iostream>
#include<queue>
#include<map>
#include<cmath>
#include<set>
#include<stack>
#define ll long long
#define pb push_back
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x))
#define cls(name,x) memset(name,x,sizeof(name))
#define pos first
#define cost second
#define mp make_pair
using namespace std;
const int inf=1e9+10;
const ll llinf=1e16+10;
const int maxn=3010;
const int maxm=1e2+10;
const int mod=1e9+7;
int n;
pair<ll,ll> shop[maxn];
ll dp[maxn];
double kfunc(int i,int j)
{
    return ((double)(dp[j]-dp[i]))/(shop[j].pos-shop[i].pos);
}
int main()
{
    //freopen("in.txt","r",stdin);
    while(~scanf("%d",&n))
    {
        for(int i=1;i<=n;i++)
        {
            ll a,b;
            scanf("%lld %lld",&a,&b);
            shop[i]=mp(a,b);
        }
        sort(shop+1,shop+n+1);
        dp[1]=shop[1].cost;
        for(int i=2;i<=n;i++)
            dp[1]+=(shop[i].pos-shop[1].pos);
        dp[2]=dp[1]+shop[2].cost-(n-2+1)*(shop[2].pos-shop[1].pos);
        int Q[maxn];
        int f=0,r=1;
        Q[0]=1;
        Q[1]=2;
        for(int i=3;i<=n;i++)
        {
            while(kfunc(Q[f],Q[f+1])<i-n-1 && r-f+1>2) f++;
            int j;
            if(kfunc(Q[f],Q[f+1])>i-n-1)
                j=Q[f];
            else j=Q[f+1];
            dp[i]=dp[j]+shop[i].cost-(shop[i].pos-shop[j].pos)*(n-i+1);
            if(kfunc(Q[r],i)>kfunc(Q[r-1],Q[r]))
            {
                Q[++r]=i;
            }
            else
            {
                while(r-f+1>1 && kfunc(Q[r],i)<kfunc(Q[r-1],Q[r]) )//可利用短路防止越界报错
                    r--;
                Q[++r]=i;
            }
        }
        ll ans=dp[1];
        for(ll i=1;i<=n;i++)
        {
            ans=min(ans,dp[i]);
        }
        printf("%lld\n",ans);
    }
    return 0;
}
复制代码

 

posted @   爱种树的码农  阅读(821)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示