BZOJ 1028 BZOJ 1029 //贪心
1028: [JSOI2007]麻将
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2197 Solved: 989
[Submit][Status][Discuss]
Description
麻将是中国传统的娱乐工具之一。麻将牌的牌可以分为字牌(共有东、南、西、北、中、发、白七种)和序数
牌(分为条子、饼子、万子三种花色,每种花色各有一到九的九种牌),每种牌各四张。在麻将中,通常情况下一
组和了的牌(即完成的牌)由十四张牌组成。十四张牌中的两张组成对子(即完全相同的两张牌),剩余的十二张
组成三张一组的四组,每一组须为顺子(即同花色且序数相连的序数牌,例如条子的三、四、五)或者是刻子(即
完全相同的三张牌)。一组听牌的牌是指一组十三张牌,且再加上某一张牌就可以组成和牌。那一张加上的牌可以
称为等待牌。在这里,我们考虑一种特殊的麻将。在这种特殊的麻将里,没有字牌,花色也只有一种。但是,序数
不被限制在一到九的范围内,而是在1到n的范围内。同时,也没有每一种牌四张的限制。一组和了的牌由3m + 2张
牌组成,其中两张组成对子,其余3m张组成三张一组的m组,每组须为顺子或刻子。现给出一组3m + 1张的牌,要
求判断该组牌是否为听牌(即还差一张就可以和牌)。如果是的话,输出所有可能的等待牌。
Input
包含两行。第一行包含两个由空格隔开整数n, m (9<=n<=400, 4<=m<=1000)。第二行包含3m + 1个由空格隔开
整数,每个数均在范围1到n之内。这些数代表要求判断听牌的牌的序数。
Output
输出为一行。如果该组牌为听牌,则输出所有的可能的等待牌的序数,数字之间用一个空格隔开。所有的序数
必须按从小到大的顺序输出。如果该组牌不是听牌,则输出"NO"。
Sample Input
1 1 2 2 3 3 5 5 5 7 8 8 8
Sample Output
1029: [JSOI2007]建筑抢修
Time Limit: 4 Sec Memory Limit: 162 MBSubmit: 4732 Solved: 2125
[Submit][Status][Discuss]
Description
小刚在玩JSOI提供的一个称之为“建筑抢修”的电脑游戏:经过了一场激烈的战斗,T部落消灭了所有z部落的
入侵者。但是T部落的基地里已经有N个建筑设施受到了严重的损伤,如果不尽快修复的话,这些建筑设施将会完全
毁坏。现在的情况是:T部落基地里只有一个修理工人,虽然他能瞬间到达任何一个建筑,但是修复每个建筑都需
要一定的时间。同时,修理工人修理完一个建筑才能修理下一个建筑,不能同时修理多个建筑。如果某个建筑在一
段时间之内没有完全修理完毕,这个建筑就报废了。你的任务是帮小刚合理的制订一个修理顺序,以抢修尽可能多
的建筑。
Input
第一行是一个整数N接下来N行每行两个整数T1,T2描述一个建筑:修理这个建筑需要T1秒,如果在T2秒之内还
没有修理完成,这个建筑就报废了。
Output
输出一个整数S,表示最多可以抢修S个建筑.N < 150,000; T1 < T2 < maxlongint
Sample Input
100 200
200 1300
1000 1250
2000 3200
Sample Output
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
priority_queue<int>Q;
struct node
{
int last,deadline;
} cstr[150008];
bool cmp(const node &a,const node &b)
{
if(a.deadline==b.deadline) return a.last<b.last;
return a.deadline<b.deadline;
}
int main()
{
int now=0,n,cnt=0;
scanf("%d",&n);
for(int i=1; i<=n; ++i) scanf("%d%d",&cstr[i].last,&cstr[i].deadline);
sort(cstr+1,cstr+n+1,cmp);
for(int i=1; i<=n; ++i)
{
if(now+cstr[i].last<=cstr[i].deadline)
{
Q.push(cstr[i].last);
++cnt;
now+=cstr[i].last;
}
else if(cstr[i].last<=Q.top())
{
now+=cstr[i].last-Q.top();
Q.pop();
Q.push(cstr[i].last);
}
}
printf("%d\n",cnt);
}