【算法复杂度分析之主方法】
最近看stanford的算法导论公开课,讲到分治法的时候提到了主方法,可以很快速的分析算法的时间复杂度。
对于一个递归实现的分治算法,其时间复杂度表示为:
T(n) = aT(n/b)+h(n)
其中,a>=1; b>1; h(n)是不参与递归部分的时间复杂度。
比较n^log b (a)与Θ(h(n)) 的大小(Θ的含义和“等于”类似,而大O的含义和“小于等于”类似,感觉好像这里都可以用):
若n^log b (a)= Θ(h(n)) :该方法的复杂度为 Θ(h(n)*log(n))
若n^log b (a)< Θ(h(n)) :该方法的复杂度为 Θ(h(n))
若n^log b (a)> Θ(h(n)) :该方法的复杂度为 Θ(n^log b (a))
例如:
T(n) = T(n/2)+1:Θ(log(n))(二分查找)
T(n) = 2T(n/2)+n :Θ(n*log(n))(归并排序)
以上都属于“等于”的情况。