引记

    此前一天,一位MS的朋友邀我一起去与他讨论快速排序,红黑树,字典树,B树、后缀树,包括KMP算法,唯独在讲解KMP算法的时候,言语磕磕盼盼,我想,原因有二:1、博客内的东西不常回顾,忘了不少;2、便是我对KMP算法的理解还不够彻底,自不用说讲解自如,运用自如了。所以,特再写本篇文章。由于此前,个人已经写过关于KMP算法的两篇文章,所以,本文名为:KMP算法之总结篇。

    本文分为二个部分:第一部分、再次回顾普通的BF算法与KMP算法各自的时间复杂度,并两相对照各自的匹配原理;第二部分、通过我此前一篇文章的引用,用图从头到尾详细阐述KMP算法中的next数组求法,并运用求得的next数组写出KMP算法的源码。力求让此文彻底让读者洞穿此KMP算法,所有原理,来龙去脉,让读者搞个通通透透。

    在看本文之前,你心中如若对前缀和后缀这个两个概念有自己的理解,便最好了。有些东西比如此KMP算法需要我们反复思考,反复求解才行。个人写的关于KMP算法的第二篇文章为:六(续)、从KMP算法一步一步谈到BM算法ok,若有任何问题,恳请不吝指正。多谢。

第一部分、KMP算法初解

1普通字符串匹配BF算法与KMP算法的时间复杂度比较

    KMP算法是一种线性时间复杂的字符串匹配算法,它是对BF算法(Brute-Force,最基本的字符串匹配算法的)改进。对于给的原始串S和模式串P,需要从字符串S中找到字符串P出现的位置的索引。

BF算法的时间复杂度O(strlen(S) * strlen(T)),空间复杂度O(1)

KMP算法的时间复杂度O(strlen(S) + strlen(T)),空间复杂度O(strlen(T))

2BF算法与KMP算法的区别

    假设现在S串匹配到i位置,T串匹配到j位置。那么总的来说,两种算法的主要区别在于失配的情况下,对[j] 的值做的处理(注意,本文中的字符串下标都是从0开始计算):

   BF算法中,如果当前字符匹配成功,即s[i+j] == T[j],令j++,继续匹配下一个字符;如果失配,即S[i + j] != T[j]需要让i++,并且j= 0,即每次匹配失败的情况下,模式串T相对于原始串S向右移动了一位。

    而KMP算法中,如果当前字符匹配成功,即S[i]==T[j],令i++j++,继续匹配下一个字符;如果匹配失败,即S[i] != T[j],需要保持i不变,并且让j = next[j],这里next[j] <=j -1,即模式串T相对于原始串S向右移动了至少1(移动的实际位数j - next[j]  >=1),

    同时移动之后,i之前的部分(即S[i-j+1 ~ i-1]),和j=next[j]之前的部分(即T[0 ~ j-2])仍然相等。显然,相对于BF算法来说,KMP移动更多的位数,起到了一个加速的作用! (失配的特殊情形,令j=next[j]导致j==0的时候,需要将i ++,否则此时没有移动模式串)
 

3、BF算法为什么要回溯

 

 

首先说一下为什么BF算法要回溯。如下两字符串匹配(恰如上面所述:BF算法中,如果当前字符匹配成功,即s[i+j] == T[j],令j++,继续匹配下一个字符):

      i+jjT中的j++变,而动)

S:aaaacefghij

         j++

T:aaac  

如果不回溯的话就是从下一位开始比起:

aaaacefghij

        aaac

看到上面红颜色的没,如果不回溯的话,那么从的下一位比起。然而下述这种情况就漏了(正确的做法当然是要回溯:如果失配,即S[i + j] != T[j]需要让i++,并且j= 0):

aaaacefghij

  aaac

 

    所以,BF算法要回溯,其代码如下:

  1. int Index(SString S, SString T, int pos) {  
  2.    //返回T在S中第pos个字符之后的位置   
  3.    i=pos; j=1;k=0;  
  4.   while ( i< = S[0] && j< = T[0] ) {  
  5.       if (S[i+k] = = T[j] ) {++k;  ++j;}   //继续比较后续字符   
  6.       else {i=i+1;   j=1; k=0;}      //指针回溯到 下一首位,重新开始   
  7.   }  
  8.   if(j>T[0]) return i;          //子串结束,说明匹配成功   
  9.   else return  0;  
  10. }//Index  
  1. int Index(SString S, SString T, int pos) {  
  2. //返回T在S中第pos个字符之后的位置  
  3. i=pos; j=1;k=0;  
  4. while ( i< = S[0] && j< = T[0] ) {  
  5. if (S[i+k] = = T[j] ) {++k;  ++j;}   //继续比较后续字符  
  6. else {i=i+1;   j=1; k=0;}      //指针回溯到 下一首位,重新开始  
  7. }  
  8. if(j>T[0]) return i;          //子串结束,说明匹配成功  
  9. else return  0;  
  10. }//Index  

 

  不过,也有特殊情况可以不回溯,如下:
abcdefghij(主串)
abcdefg(模式串)
  即(模式串)没有相同的才不需要回溯。


4KMP 算法思想
    普通的字符串匹配算法必须要回溯。但回溯就影响了效率,回溯是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。像上面所说如果主串为abcdef这样的,大没有回溯的必要。

    改进的地方也就是这里,我们从T串本身出发,事先就找准了T自身前后部分匹配的位置,那就可以改进算法。

    如果不用回溯,那模式串下一个位置从哪里开始呢?

    还是上面那个例子,T(模式串)ababc,如果c失配,那就可以往前移到aba最后一个a的位置,像这样:

...ababd...

   ababc

    ->ababc

这样i不用回溯,j跳到前2个位置,继续匹配的过程,这就是KMP算法所在。这个当T[j]失配后,应该往前跳的值就是jnext,它是由T串本身固有决定的,与S(主串)无关


5、next数组的含义

重点来了。下面解释一下next数组的含义,这个也是KMP算法中比较不好理解的一点。

  令原始串为: S[i],其中0<=i<=n;模式串为: T[j],其中0<=j<=m

  假设目前匹配到如下位置

 

               S0,S1,S2,...,Si-j,Si-j+1...............,Si-1, Si, Si+1,....,Sn

                                   T0,T1,...................,Tj-1, Tj, ..........

 

  ST的绿色部分匹配成功,恰好到SiTj的时候失配,如果要保持i不变,同时达到让模式串T相对于原始串S右移的话,可以更新j的值,让Si和新的Tj进行匹配,假设新的jnext[j]表示,即让Sinext[j]匹配,显然新的j值要小于之前的j值,模式串才会是右移的效果,也就是说应该有next[j] <= j -1。那新的j值也就是next[j]应该是多少呢?我们观察如下的匹配:

      1)如果模式串右移1位(从简单的思考起,移动一位会怎么样),即next[j] = j - 1, 即让蓝色的SiTj-1匹配 (注:省略号为未匹配部分)

 

               S0,S1,S2,...,Si-j,Si-j+1...............,Si-1, Si, Si+1,....,Sn

                                   T0,T1,...................,Tj-1, Tj, .......... (T的划线部分和S划线部分相等【1】)

                                        T0,T1,................Tj-2,Tj-1, ....... (移动后的T的划线部分和S的划线部分相等【2】)

 

        根据【1】【2】可以知道当next[j] =j -1,即模式串右移一位的时候,有T[0 ~ j-2] == T[1 ~ j-1]。而这两部分恰好是字符串T[0 ~j-1]的前缀和后缀,也就是说next[j]的值取决于模式串Tj前面部分的前缀和后缀相等部分的长度(好好揣摩这两个关键字概念:前缀、后缀,或者再想想,我的上一篇文章,从Trie树谈到后缀树中,后缀树的概念)。

      2)如果模式串右移2位,即next[j] = j - 2, 即让蓝色的SiTj-2匹配     

 

               S0,S1,...,Si-j,Si-j+1,Si-j+2...............,Si-1, Si, Si+1,....,Sn

                                   T0,T1,T2,...................,Tj-1, Tj, ..........(T的划线部分和S划线部分相等【3】)

                                              T0,T1,.............,Tj-3,Tj-2,.........(移动后的T的划线部分和S的划线部分相等【4】)

 

        同样根据【3】【4】可以知道当next[j] =j -2,即模式串右移两位的时候,有T[0 ~ j-3] == T[2 ~ j-1]。而这两部分也恰好是字符串T[0 ~j-1]的前缀和后缀,也就是说next[j]的值取决于模式串Tj前面部分的前缀和后缀相等部分的长度

     3)依次类推,可以得到如下结论:当发生失配的情况下,j的新值next[j]取决于模式串中T[0 ~ j-1]中前缀和后缀相等部分的长度, 并且next[j]恰好等于这个最大长度

    为此,请再允许我引用上文中的一段原文:“KMP算法中,如果当前字符匹配成功,即S[i]==T[j],令i++j++,继续匹配下一个字符;如果匹配失败,即S[i] != T[j],需要保持i不变,并且让j = next[j],这里next[j] <=j -1,即模式串T相对于原始串S向右移动了至少1(移动的实际位数j - next[j]  >=1),

    同时移动之后,i之前的部分(即S[i-j+1 ~ i-1]),和j=next[j]之前的部分(即T[0 ~ j-2])仍然相等。显然,相对于BF算法来说,KMP移动更多的位数,起到了一个加速的作用! (失配的特殊情形,令j=next[j]导致j==0的时候,需要将i ++,否则此时没有移动模式串)。”

    于此,也就不难理解了我的关于KMP算法的第二篇文章之中:“当匹配到S[i] != P[j]的时候有 S[i-j…i-1] = P[0…j-1]. 如果下面用j_next去匹配,则有P[0…j_next-1] = S[i-j_next…i-1] = P[j-j_next…j-1]。此过程如下图3-1所示。

  当匹配到S[i] != P[j]时,S[i-j…i-1] = P[0…j-1]

S: 0 … i-j … i-1 i …

P:       0 …   j-1 j …

  如果下面用j_next去匹配,则有P[0…j_next-1] = S[i-j_next…i-1] = P[j-j_next…j-1]。
所以在P中有如下匹配关系(获得这个匹配关系的意义是用来求next数组)

P: 0 … j-j_next  .…j-1_    …

P:        0    … .j_next-1 …

  所以,根据上面两个步骤,推出下一匹配位置j_next:

S: 0 … i-j … i-j_next …   i-1      i …

P:                   0   … j_next-1  j_next …

             图3-1 求j-next(最大的值)的三个步骤

    下面,我们用变量k来代表求得的j_next的最大值,即k表示这S[i]、P[j]不匹配时P中下一个用来匹配的位置,使得P[0…k-1] = P[j-k…j-1],而我们要尽量找到这个k的最大值。”。

      根据上文的【1】与【2】的匹配情况,可得第二篇文章之中所谓的k=1,根据上文的【3】与【4】的匹配情况,k=2。

     所以,归根究底,KMP算法的本质便是:针对待匹配的模式串的特点,判断它是否有重复的字符,从而找到它的前缀与后缀,进而求出相应的Next数组,最终根据Next数组而进行KMP匹配。

6、Next数组的具体求法

    上面给出了next数组的含义,下面给出求这个数组的具体算法。

  1)显然有next[0] = 0,next[1] = 0

  2)观察【1】【2】可以看到如果T[j]==T[j -1]T[j] == T[next[j]]的情况下(一定要注意 next[j]小,有助于理清思路)j+1前面字符串的前缀和后缀的相等部分长度增加了1,所以有T[j]==T[next[j]]的时候,next[j+1] = next[j ] + 1;

        同样观察【3】【4】也可以看到如果T[j]==T[j-2]亦即T[j]==T[next[j]的情况下,j+1前面的字符串的前缀和后缀相等部分的长度增加了1,所以也有T[j]==T[next[j]]的时候,next[j+1] = next[j] + 1;

        综合上面的规律有当T[j] == T[next[j]]的情况下next[j+1]=next[j] + 1;

3) T[j] != T[next[j]]的情况next[j+1]又该等于多少呢?拿【1】【2】来说,如果此时T[j] != T[j-1],可以移动【2】对应的串,直到【1】中的Tj等于下面【2】中对应的字符,此时就找到了j+1的最大前后缀。

    注意,移动的时候同样可以用到已经计算出的next数组的值。接下来,进入本文的第二部分。

第二部分、next数组求法的来龙去脉与KMP算法的源码

    本部分引自个人此前的关于KMP算法的第二篇文章:六之续、由KMP算法谈到BM算法。前面,我们已经知道即不能让P[j]=P[next[j]]成立成立。不能再出现上面那样的情况啊!即不能有这种情况出现:P[3]=b,而竟也有P[next[3]]=P[1]=b

    正如在第二篇文章中,所提到的那样:“这里读者理解可能有困难的是因为文中,时而next,时而nextval,把他们的思维搞混乱了。其实next用于表达数组索引,而nextval专用于表达next数组索引下的具体各值,区别细微。至于文中说不允许P[j]=P[next[j] ]出现,是因为已经有P[3]=b与S[i]匹配败,而P[next[3]]=P1=b,若再拿P[1]=b去与S[i]匹配则必败。”--六之续、由KMP算法谈到BM算法。

   又恰恰如上文中所述:“模式串T相对于原始串S向右移动了至少1(移动的实际位数j - next[j]  >=1)

    ok,求next数组的get_nextval函数正确代码如下:

  1. //代码4-1     
  2. //修正后的求next数组各值的函数代码     
  3. void get_nextval(char const* ptrn, int plen, int* nextval)    
  4. {    
  5.     int i = 0;     
  6.     nextval[i] = -1;    
  7.     int j = -1;    
  8.     while( i < plen-1 )    
  9.     {    
  10.         if( j == -1 || ptrn[i] == ptrn[j] )   //循环的if部分     
  11.         {    
  12.             ++i;    
  13.             ++j;    
  14.             //修正的地方就发生下面这4行     
  15.             if( ptrn[i] != ptrn[j] ) //++i,++j之后,再次判断ptrn[i]与ptrn[j]的关系     
  16.                 nextval[i] = j;      //之前的错误解法就在于整个判断只有这一句。     
  17.             else    
  18.                 nextval[i] = nextval[j];    
  19.         }    
  20.         else                                 //循环的else部分     
  21.             j = nextval[j];    
  22.     }    
  23. }    
  1. //代码4-1  
  2. //修正后的求next数组各值的函数代码  
  3. void get_nextval(char const* ptrn, int plen, int* nextval)  
  4. {  
  5. int i = 0;  
  6. nextval[i] = -1;  
  7. int j = -1;  
  8. while( i < plen-1 )  
  9. {  
  10. if( j == -1 || ptrn[i] == ptrn[j] )   //循环的if部分  
  11. {  
  12. ++i;  
  13. ++j;  
  14. //修正的地方就发生下面这4行  
  15. if( ptrn[i] != ptrn[j] ) //++i,++j之后,再次判断ptrn[i]与ptrn[j]的关系  
  16. nextval[i] = j;      //之前的错误解法就在于整个判断只有这一句。  
  17. else  
  18. nextval[i] = nextval[j];  
  19. }  
  20. else                                 //循环的else部分  
  21. j = nextval[j];  
  22. }  
  23. }    

 

    举个例子,举例说明下上述求next数组的方法。
S a b a b a b c
P a b a b c
S[4] != P[4]
    那么下一个和S[4]匹配的位置是k=2(也即P[next[4]])。此处的k=2也再次佐证了上文第3节开头处关于为了找到下一个匹配的位置时k的求法。上面的主串与模式串开头4个字符都是“abab”,所以,匹配失效后下一个匹配的位置直接跳两步继续进行匹配。
S a b a b a b c
P      a b a b c
匹配成功

P的next数组值分别为-1 0 -1 0 2

    next数组各值怎么求出来的呢?分以下五步:

  1. 初始化:i=0,j=-1,由于j == -1,进入上述循环的if部分,++i得i=1,++j得j=0,且ptrn[i] != ptrn[j](即a!=b)),所以得到第二个next值即nextval[1] = 0;
  2. i=1,j=0,进入循环esle部分,j=nextval[j]=nextval[0]=-1;
  3. 进入循环的if部分,++i,++j,i=2,j=0,因为ptrn[i]=ptrn[j]=a,所以nextval[2]=nextval[0]=-1;
  4. i=2, j=0, 由于ptrn[i]=ptrn[j],再次进入循环if部分,所以++i=3,++j=1,因为ptrn[i]=ptrn[j]=b,所以nextval[3]=nextval[1]=0;
  5. i=3,j=1,由于ptrn[i]=ptrn[j]=b,所以++i=4,++j=2,退出循环。 

    这样上例中模式串的next数组各值最终应该为:

            图4-1 正确的next数组各值
next数组求解的具体过程如下:
    初始化:nextval[0] = -1,我们得到第一个next值即-1.

            图4-2 第一个next值即-1

    i = 0,j = -1,由于j == -1,进入上述循环的if部分,++i得i=1,++j得j=0,且ptrn[i] != ptrn[j](即a!=b)),所以得到第二个next值即nextval[1] = 0;

            图4-3 第二个next值0

   上面我们已经得到,i= 1,j = 0,由于不满足条件j == -1 || ptrn[i] == ptrn[j],所以进入循环的esle部分,得j = nextval[j] = -1;此时,仍满足循环条件,由于i = 1,j = -1,因为j == -1,再次进入循环的if部分,++i得i=2,++j得j=0,由于ptrn[i] == ptrn[j](即ptrn[2]=ptrn[0],也就是说第1个元素和第三个元素都是a),所以进入循环if部分内嵌的else部分,得到nextval[2] = nextval[0] = -1;

         图4-4 第三个next数组元素值-1

    i = 2,j = 0,由于ptrn[i] == ptrn[j],进入if部分,++i得i=3,++j得j=1,所以ptrn[i] == ptrn[j](ptrn[3]==ptrn[1],也就是说第2个元素和第4个元素都是b),所以进入循环if部分内嵌的else部分,得到nextval[3] = nextval[1] = 0;

         图4-5 第四个数组元素值0
    如果你还是没有弄懂上述过程是怎么一回事,请现在拿出一张纸和一支笔出来,一步一步的画下上述过程。相信我,把图画出来了之后,你一定能明白它的。
    然后,我留一个问题给读者,为什么上述的next数组要那么求?有什么原理么?

    提示:我们从上述字符串abab 各字符的next值-1 0 -1 0,可以看出来,根据求得的next数组值,偷用前缀、后缀的概念,一定可以判断出在abab之中,前缀和后缀相同,即都是ab,反过来,如果一个字符串的前缀和后缀相同,那么根据前缀和后缀依次求得的next各值也是相同的。

  • 5、利用求得的next数组各值运用Kmp算法

    Ok,next数组各值已经求得,万事俱备,东风也不欠了。接下来,咱们就要应用求得的next值,应用KMP算法来匹配字符串了。还记得KMP算法是怎么一回事吗?容我再次引用下之前的KMP算法的代码,如下:

  1. //代码5-1     
  2. //int kmp_seach(char const*, int, char const*, int, int const*, int pos)  KMP模式匹配函数    
  3. //输入:src, slen主串     
  4. //输入:patn, plen模式串     
  5. //输入:nextval KMP算法中的next函数值数组     
  6. int kmp_search(char const* src, int slen, char const* patn, int plen, int const* nextval, int pos)    
  7. {    
  8.     int i = pos;    
  9.     int j = 0;    
  10.     while ( i < slen && j < plen )    
  11.     {    
  12.         if( j == -1 || src[i] == patn[j] )    
  13.         {    
  14.             ++i;    
  15.             ++j;    
  16.         }    
  17.         else    
  18.         {    
  19.             j = nextval[j];              
  20.             //当匹配失败的时候直接用p[j_next]与s[i]比较,     
  21.             //下面阐述怎么求这个值,即匹配失效后下一次匹配的位置     
  22.         }    
  23.     }    
  24.     if( j >= plen )    
  25.         return i-plen;    
  26.     else    
  27.         return -1;    
  28. }    
  1. //代码5-1  
  2. //int kmp_seach(char const*, int, char const*, int, int const*, int pos)  KMP模式匹配函数  
  3. //输入:src, slen主串  
  4. //输入:patn, plen模式串  
  5. //输入:nextval KMP算法中的next函数值数组  
  6. int kmp_search(char const* src, int slen, char const* patn, int plen, int const* nextval, int pos)  
  7. {  
  8. int i = pos;  
  9. int j = 0;  
  10. while ( i < slen && j < plen )  
  11. {  
  12. if( j == -1 || src[i] == patn[j] )  
  13. {  
  14. ++i;  
  15. ++j;  
  16. }  
  17. else  
  18. {  
  19. j = nextval[j];  
  20. //当匹配失败的时候直接用p[j_next]与s[i]比较,  
  21. //下面阐述怎么求这个值,即匹配失效后下一次匹配的位置  
  22. }  
  23. }  
  24. if( j >= plen )  
  25. return i-plen;  
  26. else  
  27. return -1;  
  28. }    

 

我们上面已经求得的next值,如下:

        图5-1 求得的正确的next数组元素各值

    以下是匹配过程,分三步:
    第一步:主串和模式串如下,S[3]与P[3]匹配失败。

               图5-2 第一步,S[3]与P[3]匹配失败
    第二步:S[3]保持不变,P的下一个匹配位置是P[next[3]],而next[3]=0,所以P[next[3]]=P[0],即P[0]与S[3]匹配。在P[0]与S[3]处匹配失败。

                图5-3 第二步,在P[0]与S[3]处匹配失败

    第三步:与上文中第3小节末的情况一致。由于上述第三步中,P[0]与S[3]还是不匹配。此时i=3,j=nextval[0]=-1,由于满足条件j==-1,所以进入循环的if部分,++i=4,++j=0,即主串指针下移一个位置,从P[0]与S[4]处开始匹配。最后j==plen,跳出循环,输出结果i-plen=4(即字串第一次出现的位置),匹配成功,算法结束。

                图5-4 第三步,匹配成功,算法结束
    所以,综上,总结上述三步为: 

  1. 开始匹配,直到P[3]!=S[3],匹配失败;
  2. nextval[3]=0,所以P[0]继续与S[3]匹配,再次匹配失败;
  3. nextval[0]=-1,满足循环if部分条件j==-1,所以,++i,++j,主串指针下移一个位置,从P[0]与S[4]处开始匹配,最后j==plen,跳出循环,输出结果i-plen=4,算法结束。

相关链接

后记  

     OK, 相信,看过此文后,无论是谁,都一定可以把KMP算法搞懂了(但万一还是有读者没有搞懂,那怎么办呢?还有最后一个办法:把本文打印下来,再仔细琢磨。如果是真真正正想彻底弄懂某一个东西,那么必须付出些代价。但万一要是打印下来了却还是没有弄懂呢?那来北京找我吧,我手把手教你。祝好运)。谢谢,完。
    July、二零一一年十二月五日中午。
posted on 2013-05-15 22:12  知识天地  阅读(542)  评论(0编辑  收藏  举报