NEU 1440 The minimum square sum (平方剩余和欧拉准则)

若p=2或p=4*k+1 则p能够表成两平方数的和的形式 (欧拉和费马已证明,而且有求的方法) 所以答案是p

若p=4*k+3 设a^2=n(mod p) (n!=0)  能够证明不存在b,b^2=p-n(mod p) 即若n是p的平方剩余 则p-n不是p的平方剩余

证明:由于a^2=n(mod p) 所以由欧拉准则 得n^((p-1)/2)=1(mod p)

若b^2=-n(mod p) 那么(-n)^((p-1)/2)=1(mod p)

左边把符号提出来 得(-1)^((p-1)/2)*n^((p-1)/2)

由于p是4*k+3型的 所以(p-1)/2是奇数 所以左边不可能等于1 如果与事实矛盾所以

因此a^2=0(mod p) b^2=0(mod p) 所以答案是2*p*p

#include<bits/stdc++.h>
using namespace std;
int main()
{
    long long p;
    while(scanf("%lld",&p)==1)
    {
        if(p==2||p%4==1)
            printf("%lld\n",p);
        else
            printf("%lld\n",p*p*2);
    }
    return 0;
}


posted @ 2015-01-25 14:33  mfrbuaa  阅读(329)  评论(0编辑  收藏  举报