【codeforces #282(div 1)】AB题解

A. Treasure
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Malek has recently found a treasure map. While he was looking for a treasure he found a locked door. There was a string s written on the door consisting of characters '(', ')' and '#'. Below there was a manual on how to open the door. After spending a long time Malek managed to decode the manual and found out that the goal is to replace each '#' with one or more ')' characters so that the final string becomes beautiful.

Below there was also written that a string is called beautiful if for each i (1 ≤ i ≤ |s|) there are no more ')' characters than '(' characters among the first i characters of s and also the total number of '(' characters is equal to the total number of ')' characters.

Help Malek open the door by telling him for each '#' character how many ')' characters he must replace it with.

Input

The first line of the input contains a string s (1 ≤ |s| ≤ 105). Each character of this string is one of the characters '(', ')' or '#'. It is guaranteed that s contains at least one '#' character.

Output

If there is no way of replacing '#' characters which leads to a beautiful string print  - 1. Otherwise for each character '#' print a separate line containing a positive integer, the number of ')' characters this character must be replaced with.

If there are several possible answers, you may output any of them.

Sample test(s)
input
(((#)((#)
output
1
2
input
()((#((#(#()
output
2
2
1
input
#
output
-1
input
(#)
output
-1


贪心。


(表示1,)表示-1。


满足条件则前缀和时刻都要>=0。


那么遇到#我们仅仅让他表示一个)。前缀和仅仅-1。遇到最后一个#再把前面的债还清。


一開始WA了,由于我遇到最后一个#就无论前缀和了。


因此(#(这种数据就过不了。

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#define M 100000+5
using namespace std;
char s[M];
int ans[M];
int main()
{
        scanf("%s",s);
	int l=strlen(s);
	int la,now=0,tot=0;
	for (int i=0;i<l;i++)
	{
	    if (s[i]=='#')
		{
			ans[++tot]=1;
			now--;
			la=i;
		}
		if (s[i]=='(') now++;
		if (s[i]==')') now--;
		if (now<0)
		{
			puts("-1");
			return 0;
		}
	}
	int x=0;
	for (int i=l-1;i>la;i--)
	{
		if (s[i]=='(')
			x--;
	    else x++;
	    if (x<0)
	    {
			puts("-1");
		    return 0;
	    }
	}
	ans[tot]+=now;
	for (int i=1;i<=tot;i++)
		printf("%d\n",ans[i]);
	return 0;
}

B. Obsessive String
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Hamed has recently found a string t and suddenly became quite fond of it. He spent several days trying to find all occurrences of t in other strings he had. Finally he became tired and started thinking about the following problem. Given a string s how many ways are there to extract k ≥ 1 non-overlapping substrings from it such that each of them contains string t as a substring? More formally, you need to calculate the number of ways to choose two sequences a1, a2, ..., ak and b1, b2, ..., bk satisfying the following requirements:

  • k ≥ 1
  •   t is a substring of string saisai + 1... sbi (string s is considered as 1-indexed).

As the number of ways can be rather large print it modulo 109 + 7.

Input

Input consists of two lines containing strings s and t (1 ≤ |s|, |t| ≤ 105). Each string consists of lowercase Latin letters.

Output

Print the answer in a single line.

Sample test(s)
input
ababa
aba
output
5
input
welcometoroundtwohundredandeightytwo
d
output
274201
input
ddd
d
output
12

kmp+dp。


首先用kmp高速求出每一位的ok[i],也就是从i到ok[i]包括t,且ok[i]最小。


然后进行dp:

f[i]表示a[1]=i的方案数。这显然要倒着做。


f[i]=sigma(sigma(f[ok[i]+1...n-1)+sigma(f[ok[i]+2...n-1]...+f[n-1]))


维护后缀和sum[i]表示i到n-1的f值得后缀和。


再维护后缀和的后缀和ss[i]表示i到n-1的sum[i]的后缀和。


于是f[i]=ss[ok[i]+1],转移变成O(1)了!

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#define mod 1000000007
#define M 100000+5
using namespace std;
int ss[M],ne[M],n,m,ok[M],sum[M],f[M];
char s[M],t[M];
void Getfail()
{
	ne[0]=0;
	ne[1]=0;
	for (int i=1;i<m;i++)
	{
		int j=ne[i];
		while (j&&t[i]!=t[j])
			j=ne[j];
		ne[i+1]=t[i]==t[j]?

j+1:0; } } void Find() { Getfail(); int j=0; int now=0; for (int i=0;i<n;i++) ok[i]=n; for (int i=0;i<n;i++) { while (j&&t[j]!=s[i]) j=ne[j]; if (t[j]==s[i]) j++; if (j==m) { for (int k=now;k<=i-m+1;k++) ok[k]=min(i,ok[k]); now=i-m+2; j=ne[j]; } } } int main() { scanf("%s",s); scanf("%s",t); n=strlen(s),m=strlen(t); Find(); for (int i=n-1;i>=0;i--) { f[i]=n-1-(ok[i]-1); f[i]=(f[i]+ss[ok[i]+1])%mod; sum[i]=(sum[i+1]+f[i])%mod; ss[i]=(ss[i+1]+sum[i])%mod; } cout<<sum[0]%mod<<endl; return 0; }



posted @ 2017-04-21 12:41  mfmdaoyou  阅读(231)  评论(0编辑  收藏  举报