UVA - 10706 Number Sequence
先找到是在哪个集合内,再找到是集合内的哪个元素,最后找到元素的第几位数
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> using namespace std; long long table[100010]; long long psum[100010]; int n=100000; void maketable() { int i,flag=1,x=0; for(i=1;i<=n;i++) { if(i%flag==0) { flag*=10; x++; } table[i]=table[i-1]+x; psum[i]+=table[i]+psum[i-1]; } } int main() { //freopen("in","r",stdin); //freopen("out","w",stdout); maketable(); int T,i,t; long long x; char s[100]; cin>>T; while(T--) { cin>>x; i=lower_bound(psum,psum+n,x)-psum; if(psum[i]==x) cout<<i%10<<endl; else { x-=psum[i-1]; i=lower_bound(table,table+n,x)-table; if(table[i]==x) cout<<i%10<<endl; else { x-=table[i-1]; sprintf(s,"%d",i); cout<<s[x-1]<<endl; } } } return 0; }
UVA - 10706
Time Limit: 3000MS | Memory Limit: Unknown | 64bit IO Format: %lld & %llu |
Description
Problem B
Number Sequence
Input: standard input
Output: standard output
Time Limit: 1 second
A single positive integer iis given. Write a program to find the digit located in the position iin the sequence of number groups S1S2…Sk. Each group Skconsists of a sequence of positive integer numbers ranging from 1 to k, written one after another. For example, the first 80 digits of the sequence are as follows:
11212312341234512345612345671234567812345678912345678910123456789101112345678910
Input
The first line of the input file contains a single integer t (1 <=t <=25), the number of test cases, followed by one line for each test case. The line for a test case contains the single integer i (1 <=i <=2147483647)
Output
There should be one output line per test case containing the digit located in the position i.
Sample Input Output for Sample Input
2 8 3 |
2 2 |
Problem source: Iranian Contest
Special Thanks: Shahriar Manzoor, EPS.
Source
Root :: Competitive Programming 2: This increases the lower bound of Programming Contests. Again (Steven & Felix Halim) :: Problem Solving Paradigms :: Divide and Conquer -Binary Search
Root :: Competitive Programming 3: The New Lower Bound of Programming Contests (Steven & Felix Halim) :: Problem Solving Paradigms :: Divide and Conquer :: Binary Search