幻方(4n+2暂时看不懂)
奇数阶幻方
Siamese方法(Kraitchik 1942年,pp. 148-149)是构造奇数阶幻方的一种方法,说明如下:
- 把
放置在第一行的中间。
- 顺序将
等数放在右上方格中。
- 当右上方格出界的时候,则由另一边进入。
- 当右上方格中已经填有数,则把数填入正下方的方格中。
- 按照以上步骤直到填写完所有N^2个方格。
偶数阶幻方
N为四的倍数:
采用对称元素交换法.
首先把数1到n×n按从上至下,从左到右顺序填入矩阵
然后将方阵的所有4×4子方阵中的两对角线上位置的数关于方阵中心作对
称交换,即a(i,j)与a(n-1-i,n-1-j)交换,所有其它位置上的数不变.
(或者将对角线不变,其它位置对称交换也可)
N 为其它偶数时
当n为非4倍数的偶数(即4n+2形)时:首先把大方阵分解为4个奇数(2m+1阶)子方阵.
按上述奇数阶幻方给分解的4个子方阵对应赋值
上左子阵最小(i),下右子阵次小(i+v),下左子阵最大(i+3v),上右子阵次大(i+2v)
即4个子方阵对应元素相差v,其中v=n*n/4
四个子矩阵由小到大排列方式为 ① ③
④ ②
然后作相应的元素交换:a(i,j)与a(i+u,j)在同一列做对应交换(j<t或j>n-t+2),
a(t-1,0)与a(t+u-1,0);a(t-1,t-1)与a(t+u-1,t-1)两对元素交换
其中u=n/2,t=(n+2)/4 上述交换使每行每列与两对角线上元素之和相等.