Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/AMS-Regular.js

拓扑排序&关键路径

作者:@Messier
本文为作者原创,转载请注明出处:https://www.cnblogs.com/messier/p/7831133.html


目录

拓扑排序:AOV网
概念
example:选课问题:AOV网
算法
关键路径:AOE网

拓扑排序:AOV网

概念

example:选课问题:AOV网

顶点活动(Activity On Vertex)网是指用顶点表示活动,而用边集表示活动关系的有向图。
在这个例子中,课程为结点,而有向边表示着课程的依赖关系。

算法

1.定义一个队列Q,并把所有入度为0的结点加入队列

2.取队首结点,输出(存储)。然后删去所有从它出发的边(非必要),并令这些边达到的顶点的入度减1,如果某个顶点的入度减为0,则将其加入队列

3.反复进行步骤2,直到队列为空。如果此时入队次数恰好为N,说明排序成功,G为有向无环图;否则,拓扑排序失败,G有环。
(PS:如果要求有多个度为0的节点时,输出编号最小的点,可以使用优先队列)
伪码

关键路径:AOE网

边活动(Activity On Edge)网是指带权的边集表示活动,而用顶点表示事件的有向图,其中边权表示完成活动所需要的时间。

在上图中,每个顶点代表先前的事件已完成,可以进行下一个事件。

一般来说,AOE网用来表示一个工程的进行过程,AOE网中同样不能有环。
对于一个工程来说,多个子进程可以同时进行。

AOE网中入度为0的点名为源点(上图1),出度为0的点名为汇点上图2)。从所有源点出发,到达所有汇点所需的时间即为完成工程的总时间,也即为到达所有顶点所需的时间。

求解这个时间,即是要求解AOE网的最长路径,也叫作关键路径,关键路径上的活动就叫作关键活动。

拓扑排序就是其中一种可以解决该问题的算法。只需对AOV的算法稍加修改即可:
增加一个最早到达各顶点时间的数组。
在步骤2中,遍历一个顶点u指向的所有下一个顶点v时:
若:

time[u]+weightuv>time[v]time[u]+weightuv>time[v]

则:

time[v]=time[u]+weightuv

posted @   Messier  阅读(684)  评论(0编辑  收藏  举报
编辑推荐:
· .NET制作智能桌面机器人:结合BotSharp智能体框架开发语音交互
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
· 一次Java后端服务间歇性响应慢的问题排查记录
阅读排行:
· 互联网不景气了那就玩玩嵌入式吧,用纯.NET开发并制作一个智能桌面机器人(四):结合BotSharp
· Vite CVE-2025-30208 安全漏洞
· 《HelloGitHub》第 108 期
· MQ 如何保证数据一致性?
· 一个基于 .NET 开源免费的异地组网和内网穿透工具
点击右上角即可分享
微信分享提示