[Machine Learning]学习笔记-线性回归

模型

假定有i组输入输出数据。输入变量可以用\(x^i\)表示,输出变量可以用\(y^i\)表示,一对\(\{x^i,y^i\}\)名为训练样本(training example),它们的集合则名为训练集(training set)
假定\(X\)有j个特征,则可以用集合\({x^i_1,x^i_2,\dots ,x^i_j}\)表示。
为了描述模型,要建立假设方程(hypothesis function) :
$ h:X\to Y\(。 \)h_\theta (x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \cdots + \theta_n x_n\( 也可以写成矩阵形式: \)\begin{align}h_\theta(x) =\begin{bmatrix}\theta_0 \hspace{2em} \theta_1 \hspace{2em} ... \hspace{2em} \theta_n\end{bmatrix}\begin{bmatrix}x_0 \newline x_1 \newline \vdots \newline x_n\end{bmatrix}= \theta^T x\end{align}$
(备注:一般一维向量都写成列向量)
评价假设方程的准确性,可以用代价函数(cost function)

代价函数


代价函数可以表示为遍历每个样本,求预测值和实际值的残差平方和的均值。
\(J(\theta) = \dfrac {1}{2m} \displaystyle \sum _{i=1}^m \left ( \hat{y}_{i}- y_{i} \right)^2 = \dfrac {1}{2m} \displaystyle \sum _{i=1}^m \left (h_\theta (x_{i}) - y_{i} \right)^2\)

显然,代价函数值越小,假设方程越准确。
由此可引入两种方法-梯度下降(Gradient Descent)正规方程(Normal Equation)来调整参数\(\theta\)使\(J\)的值最小。

梯度下降

The gradient descent algorithm is:

repeat until convergence:

\(\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)\)

求偏导(舍去m):

\[\begin{equation*} \begin{split} \frac{\partial}{\partial \theta_j} J(\theta) & = \frac{\partial}{\partial \theta_j}\frac{1}{2m}( h_\theta(\boldsymbol{x})-y)^2 \\ & =2\cdot\frac{1}{2m}\cdot( h_\theta(\boldsymbol{x})-y)\cdot\frac{\partial}{\partial \theta_j}( h_\theta(\boldsymbol{x})-y) \\ & = \frac{1}{m}(h_\theta(\boldsymbol{x})-y)\cdot \frac{\partial}{\partial \theta_j}(\sum_{i=0}^{n}\theta_i x_i-y) \\ & =\frac{1}{m} (h_\theta(\boldsymbol{x})-y)x_j \\ \end{split} \end{equation*}\]

\(\alpha\)学习速率(learning rate),对应上图的步长。
对于一条样本,可得:
\(\theta_j := \theta_j - \alpha \frac{1}{m} (h_\theta(x^i)-y^i)x_{j}^{i}\)

这就是有名的LMS更新原则,也叫Widrow-Hoff学习准则,参数 θ 更新的幅度取决于误差项的大小。从一对样本的情况,我们推导出参数θ
如何更新使得函数可以收敛。事实上,对于含有多个训练样本的情况,有两个方法可以对参数θ 进行更新,一个是 batch model, 另外一个是stochastic model。

(PS:这篇博客介绍的很详细,但最后两个公式的正负号错了。)

batch mode:

每次更新都遍历所有样本

\[\begin{align*} & \text{repeat until convergence:} \; \lbrace \newline \; & \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}\newline \; & \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)} \newline \; & \theta_2 := \theta_2 - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \newline & \cdots \newline \rbrace \end{align*} \]

特征缩放(Feature Scaling)

在使用梯度下降算法前,最好对每个特征进行归一化操作。
归一化公式:

\[x_j := \dfrac{x_j - \mu_j}{s_j} \]

\(\mu_j-样本均值\)
\(s_j -样本方差\)

正规方程

公式

推导过程
\(\theta = (X^T X)^{-1}X^T y\)

与梯度下降的对比

Gradient Descent Normal Equation
Need to choose alpha No need to choose alpha
Needs many iterations No need to iterate
O (kn2) O (n3), need to calculate inverse of XTX
Works well when n is large Slow if n is very large
posted @ 2017-11-04 11:00  Messier  阅读(244)  评论(0编辑  收藏  举报