从零自学Hadoop(19):HBase介绍及安装
阅读目录
本文版权归mephisto和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作。
文章是哥(mephisto)写的,SourceLink
序
上一篇,我们讲述了Hive的CLI和JDBC,从编程和使用的角度进入了Hadoop生态。这里就介绍下Hadoop DataBase,简称HBase。
下面我们开始介绍HBase的介绍及安装。
介绍
一:定义
HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。
二:架构
Client
包含访问HBase的接口,并维护cache来加快对HBase的访问,比如region的位置信息。
Master
为Region server分配region
负责Region server的负载均衡
发现失效的Region server并重新分配其上的region
管理用户对table的增删改查操作
Region Server
Regionserver维护region,处理对这些region的IO请求
Regionserver负责切分在运行过程中变得过大的region
Zookeeper作用
通过选举,保证任何时候,集群中只有一个master,Master与RegionServers 启动时会向ZooKeeper注册
存贮所有Region的寻址入口
实时监控Region server的上线和下线信息。并实时通知给Master
存储HBase的schema和table元数据
默认情况下,HBase 管理ZooKeeper 实例,比如, 启动或者停止ZooKeeper
Zookeeper的引入使得Master不再是单点故障Write-Ahead-Log(WAL)
每个HRegionServer中都有一个HLog对象,HLog是一个实现Write Ahead Log的类,在每次用户操作写入MemStore的同时,也会写一份数据到HLog文件中(HLog文件格式见后续),HLog文件定期会滚动出新的,并删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知到,HMaster首先会处理遗留的 HLog文件,将其中不同Region的Log数据进行拆分,分别放到相应region的目录下,然后再将失效的region重新分配,领取 到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复。
HBase容错性
Master容错:
Zookeeper重新选择一个新的Master
无Master过程中,数据读取仍照常进行;
无master过程中,region切分、负载均衡等无法进行;
RegionServer容错:定时向Zookeeper汇报心跳,如果一旦时间内未出现心跳,Master将该RegionServer上的Region重新分配到其他RegionServer上,失效服务器上“预写”日志由主服务器进行分割并派送给新的RegionServer
Zookeeper容错:
Zookeeper是一个可靠地服务,一般配置3或5个Zookeeper实例
Region定位流程:
安装
一:已安装服务
二:新增服务
三:勾选HBase
四:分布HBase相关组件
五:分配从节点和客户端
六:HBase配置
设置HBase的配置。
七:预览
安装前预览。
八:安装,测试,启动
开始安装了,我们耐心的等待。
八:完成
九:效果
我们可以看到ambari的监控界面可以看到已经装好的HBase
十:shell命令登陆
hbase shell
十一:HBase UI
--------------------------------------------------------------------
到此,本章节的内容讲述完毕。
系列索引
本文版权归mephisto和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作。
文章是哥(mephisto)写的,SourceLink