Bubble Cup 8 finals B. Bribes (575B)

题意:

给定一棵n个点和有向边构成的树,其中一些边是合法边,一些边是非法边,

经过非法边需要1的费用,并且经过之后费用翻倍。

给定一个长为m的序列,问从点1开始按顺序移动到序列中对应点的总费用。

1<=n<=10^5,

1<=m<=10^6

 

题解:

还是比较水的…

正解是各种方法求LCA,在点上打标记,最后DFS一遍就可以得到答案。

用tarjan求LCA可以做到总复杂度O(n*α)…

我傻傻地见树就剖,强行O(n log n log n)碾过去了…

每次把起点终点之间的路径的经过次数加一,最后统计非法边对应的点,

对答案的贡献是 2^(次数)-1 。

ZKW线段树的常数还是比较可以接受的…虽然Codeforces机子本来就快…

 

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#include <cstdio>
#include <cstring>
#define fore(p) for(int pt=h[p];pt;pt=e[pt].nx)
typedef long long lint;
const int N = 100010, MO = 1000000007;
inline int read()
{
	int s = 0; char c; while((c=getchar())<'0'||c>'9');
	do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');
	return s;
}
int n,q,aa,bb,tot,ttot,cur,tg,curd,tim,ans,ql,qr,S,p2[1000010],h[N],top[N],d[N],hs[N],f[N],iw[N];
bool il[N],il2[N],qv;
struct eg{int dt,nx;bool le;}e[N*2];
struct segt
{
	int tr[N*3];
	int query(int p){ int s = 0; for(int i=S+p;i>=1;i>>=1) s += tr[i]; return s; }
	void db(int l,int r)
	{
		for(l=l+S-1,r=r+S+1;l^r^1;l>>=1,r>>=1)
		{
			if(~l&1) tr[l^1]++;
			if( r&1) tr[r^1]++;
		}
	}
}tr1,tr2;
inline void link(int b)
{
	e[++tot].nx = h[aa]; e[tot].dt = bb; e[tot].le = 1; h[aa] = tot;
	e[++tot].nx = h[bb]; e[tot].dt = aa; e[tot].le = b; h[bb] = tot;
}
int dfs1(int p,int ff)
{
	f[p] = ff, d[p] = ++curd;
	int sz = 1,nx,t,mx=0;
	fore(p)
	{
		if((nx=e[pt].dt)==ff) continue;
		if(e[pt^1].le) il[nx] = 1;
		if(e[pt].le) il2[nx] = 1;
		t = dfs1(nx,p);
		if(t>mx) mx = t, hs[p] = nx;
	}
	curd--;
	return sz;
}
void dfs2(int p,int tp)
{
	top[p] = tp;
	iw[p] = ++tim;
	if(hs[p]) dfs2(hs[p],tp);
	fore(p)
		if(e[pt].dt!=f[p]&&e[pt].dt!=hs[p])
			dfs2(e[pt].dt,e[pt].dt);
}
void calc(int aa,int bb)
{
	if(aa==bb) return;
	while(top[aa]!=top[bb])
	{
		if(d[top[aa]]>d[top[bb]]) tr1.db(iw[top[aa]],iw[aa]), aa = f[top[aa]];
		else tr2.db(iw[top[bb]],iw[bb]), bb = f[top[bb]];
	}
	if(d[aa]>d[bb]) tr1.db(iw[bb]+1,iw[aa]);
	else tr2.db(iw[aa]+1,iw[bb]);
}
int main()
{
	int i,j;
	n = read();
	for(S=1;S<=n+2;S<<=1);
	for(i=2,tot=1;i<=n;i++) aa = read(), bb = read(), link(!read());
	dfs1(1,0); dfs2(1,1); q = read();
	for(p2[0]=1,i=1;i<=q;i++) p2[i] = ((lint)p2[i-1]<<1ll)%MO;
	for(cur=1;q--;cur=tg) 
		tg = read(), calc(cur,tg);
	for(i=1;i<=n;i++)
	{
		if(!il[i]) ans = ((lint)ans+p2[tr1.query(iw[i])]+MO-1)%MO;
		if(!il2[i]) ans = ((lint)ans+p2[tr2.query(iw[i])]+MO-1)%MO;
	}
	printf("%d\n",ans);
	return 0;
}

 

补上O(n*α)的做法:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include <cstdio>
#include <cstring>
#define fore(p) for(int pt=h[p];pt;pt=e[pt].nx)
typedef long long lint;
const int N = 100010, MO = 1000000007;
inline int read()
{
	int s = 0; char c; while((c=getchar())<'0'||c>'9');
	do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');
	return s;
}
int n,q,aa,bb,tot,qtot,cur,tg,curd,tim,ans,p2[1000010],h[N],qh[N],rp[N],f[N],w[N],w2[N],mx;
bool il[N],il2[N],b[N],qv;
struct eg{int dt,nx;bool le;}e[N*2];
struct qu{int dt,nx;}qs[N*20];
inline void link(int b)
{
	e[++tot].nx = h[aa]; e[tot].dt = bb; e[tot].le = 1; h[aa] = tot;
	e[++tot].nx = h[bb]; e[tot].dt = aa; e[tot].le = b; h[bb] = tot;
}
inline void linkq()
{
	if(aa==bb) return;
	qs[++qtot].nx = qh[aa]; qs[qtot].dt = bb; qh[aa] = qtot;
	qs[++qtot].nx = qh[bb]; qs[qtot].dt = aa; qh[bb] = qtot;
	w[aa]++; w2[bb]++;
}
int findf(int p){ return f[p]==p?p:(f[p]=findf(f[p])); }
void dfs(int p)
{
	b[p] = 1;
	for(int nx,pt=qh[p];pt;pt=qs[pt].nx)
		if(b[qs[pt].dt])
			nx = findf(qs[pt].dt), w[nx]--, w2[nx]--;
	for(int nx,pt=h[p];pt;pt=e[pt].nx)
		if(!b[nx=e[pt].dt])
		{
			if(e[pt^1].le) il[nx] = 1;
			if(e[pt].le) il2[nx] = 1;
			dfs(nx);
			f[nx] = p;
			w[p] += w[nx];
			w2[p] += w2[nx];
		}
	if(w[p]>mx) mx = w[p];
	if(w2[p]>mx) mx = w2[p];
}
int main()
{
	int i,j;
	for(n=read(),i=2,tot=1,f[1]=1;i<=n;i++) aa = read(), bb = read(), link(!read()), f[i] = i;
	for(q=read(),i=1,qtot=1,aa=1;i<=q;i++,aa=bb) bb = read(), linkq();
	dfs(1);
	for(p2[0]=1,i=1;i<=mx;i++) p2[i] = ((lint)p2[i-1]<<1ll)%MO;
	for(i=1;i<=n;i++)
	{
		if(!il[i]) ans = ((lint)ans+p2[w[i]]-1)%MO;
		if(!il2[i]) ans = ((lint)ans+p2[w2[i]]-1)%MO;
	}
	printf("%d\n",ans);
	return 0;
}

 

posted @ 2015-11-23 21:51  MoebiusMeow  阅读(625)  评论(0编辑  收藏  举报