康托展开
康托展开的公式是 X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! 其中,ai为当前未出现的元素中是排在第几个(从0开始)。
这个公式可能看着让人头大,最好举个例子来说明一下。例如,有一个数组 s = ["A", "B", "C", "D"],它的一个排列 s1 = ["D", "B", "A", "C"],现在要把 s1 映射成 X。n 指的是数组的长度,也就是4,所以
X(s1) = a4*3! + a3*2! + a2*1! + a1*0!
关键问题是 a4、a3、a2 和 a1 等于啥?
a4 = "D" 这个元素在子数组 ["D", "B", "A", "C"] 中是第几大的元素。"A"是第0大的元素,"B"是第1大的元素,"C" 是第2大的元素,"D"是第3大的元素,所以 a4 = 3。
a3 = "B" 这个元素在子数组 ["B", "A", "C"] 中是第几大的元素。"A"是第0大的元素,"B"是第1大的元素,"C" 是第2大的元素,所以 a3 = 1。
a2 = "A" 这个元素在子数组 ["A", "C"] 中是第几大的元素。"A"是第0大的元素,"C"是第1大的元素,所以 a2 = 0。
a1 = "C" 这个元素在子数组 ["C"] 中是第几大的元素。"C" 是第0大的元素,所以 a1 = 0。(因为子数组只有1个元素,所以a1总是为0)
所以,X(s1) = 3*3! + 1*2! + 0*1! + 0*0! = 20
A B C | 0
A C B | 1
B A C | 2
B C A | 3
C A B | 4
C B A | 5
通过康托逆展开生成全排列
如果已知 s = ["A", "B", "C", "D"],X(s1) = 20,能否推出 s1 = ["D", "B", "A", "C"] 呢?
因为已知 X(s1) = a4*3! + a3*2! + a2*1! + a1*0! = 20,所以问题变成由 20 能否唯一地映射出一组 a4、a3、a2、a1?如果不考虑 ai 的取值范围,有
3*3! + 1*2! + 0*1! + 0*0! = 20
2*3! + 4*2! + 0*1! + 0*0! = 20
1*3! + 7*2! + 0*1! + 0*0! = 20
0*3! + 10*2! + 0*1! + 0*0! = 20
0*3! + 0*2! + 20*1! + 0*0! = 20
等等。但是满足 0 <= ai <= n-1 的只有第一组。可以使用辗转相除的方法得到 ai,如下图所示:
知道了a4、a3、a2、a1的值,就可以知道s1[0] 是子数组["A", "B", "C", "D"]中第3大的元素 "D",s1[1] 是子数组 ["A", "B", "C"] 中第1大的元素"B",s1[2] 是子数组 ["A", "C"] 中第0大的元素"A",s[3] 是子数组 ["C"] 中第0大的元素"C",所以s1 = ["D", "B", "A", "C"]。
这样我们就能写出一个函数 Permutation3(),它可以返回 s 的第 m 个排列。
前边内容参考http://blog.csdn.net/zhongkeli/article/details/6966805#
现在结合一个题来详细说明康托展开:
我排第几个
- 描述
-
现在有"abcdefghijkl”12个字符,将其所有的排列中按字典序排列,给出任意一种排列,说出这个排列在所有的排列中是第几小的?
- 输入
- 第一行有一个整数n(0<n<=10000); 随后有n行,每行是一个排列;
- 输出
- 输出一个整数m,占一行,m表示排列是第几位;
- 样例输入
-
3 abcdefghijkl hgebkflacdji gfkedhjblcia
- 样例输出
-
1 302715242 260726926
1 #include<stdio.h> 2 #include<string.h> 3 #define COUNT 13 4 char ch[COUNT] = "abcdefghijkl"; 5 char str[COUNT]; 6 int fac[13] ={1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600}; 7 int main() 8 { 9 int n; 10 scanf("%d",&n); 11 while(n--) 12 { 13 scanf("%s",str); 14 int cou = 0; 15 int temp ; 16 int len = strlen(str); 17 for(int i=0;i<len;i++) 18 { 19 20 temp =0; 21 for(int j=i+1;j<len;j++) 22 { 23 24 if(str[j]<str[i]) 25 temp++; 26 27 } 28 cou+=fac[len-i-1]*temp; 29 } 30 printf("%d",cou+1); 31 } 32 return 0; 33 }