HashMap源码浅析(jdk1.8)

HashMap是以key-value键值对的形式进行存储数据的,数据结构是以数组+链表或红黑树实现。

数据结构图如下:

 

一、关键属性

HashMap初始化和方法使用的属性。

    /**
     * 默认初始容量16(2的4次方)
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * 最大容量(2的30次方)
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * 默认加载因子
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * 链表节点数大于8变成红黑树
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * 红黑树节点数小于6变成链表
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * 在变成红黑树前判断键值对的数量是否小于64
     */
    static final int MIN_TREEIFY_CAPACITY = 64;
View Code

二、构造方法

1、HashMap(int initialCapacity, float loadFactor),对参数进行校验并初始化容量和加载因子。

    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }
    
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }
View Code

2、HashMap(int initialCapacity)调用第一个构造方法。

    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
View Code

3、HashMap(Map<? extends K, ? extends V> m),把参数map集合初始化到新集合中。

    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            else if (s > threshold)
                resize();
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }
View Code

4、HashMap()方法只初始化加载因子。

    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
View Code

三、主要方法

1、put(K key, V value)方法,先通过计算hash来判断新元素所在节点数组的位置,

如果位置为空则直接添加新元素放在数组节点上,如果不为空则在通过hash和key来判断新添加的元素是否

和在此数组节点上的元素有相同的key,相同则覆盖,否则在判断此节点是树节点还是普通节点,

树节点则进入红黑树的添加,普通节点进入链表的添加,链表通过循环来判断新节点是覆盖还是在尾部添加,

还是超出8个节点变成红黑树添加。

    // 添加元素或覆盖元素
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    // 计算hash值,即元素所属的数组位置
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
    
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        // 如果table为初始化或长度为0,则扩容
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        // 链表第一个元素直接创建新节点并赋值
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
            
        // 在已有链表或红黑树上添加新节点
        else {
            Node<K,V> e; K k;
            // 如果添加的节点和原有的key相同则覆盖
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // 如果p为红黑树则在这添加
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            // 链表这边添加
            else {
                // 循环链表
                for (int binCount = 0; ; ++binCount) {
                    // 下一个为空直接赋值
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // hash和key相同退出循环
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }
View Code

2、resize()方法,对原map集合进行扩容,容量变为原来2倍。

    final Node<K,V>[] resize() {
        // 保存当前数组节点
        Node<K,V>[] oldTab = table;
        // 保存原数组节点大小
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        // 保存当前阀值
        int oldThr = threshold;
        // 声明新数组节点大小和阀值
        int newCap, newThr = 0;
        // 原map有值
        if (oldCap > 0) {
            // 原map元素个数已达到最大值
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 原map容量2倍小于最大值且原map容量大于等于16则扩容
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        // 只进行初始化没有添加元素的进这个
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        // 只调用HashMap()进这个
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        // 新阀值为0(只进行初始化)
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            // 初始化新节点数组
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        // 原节点数组不为空
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                // 原数组第一个节点不为空
                if ((e = oldTab[j]) != null) {
                    // 主动释放
                    oldTab[j] = null;
                    // 只有数组节点(此索引处只有一个节点)
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    // e为红黑树节点
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    // e为普通节点
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
View Code

3、remove(Object key)方法,根据key删除元素。

    // 根据key删除元素
    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }
    
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        // map集合不为空
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            // 所删节点就在数组节点上
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                // 循环红黑树
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                // 普通节点
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            // 找到要删除的节点进行删除
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }
View Code

4、get(Object key)方法,根据key查找元素。

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        // map集合不为空
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            // 所找节点正式在数组节点上
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            // 在链表或红黑树上找节点
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }
View Code

 

posted @ 2017-06-05 20:03  吉良吉影的冒险  阅读(147)  评论(0编辑  收藏  举报