pandas中数据结构-Series
pandas中数据结构-Series
pandas简介
Pandas是一个开源的,BSD许可的Python库,为Python编程语言提供了高性能,易于使用的数据结构和数据分析工具。Python与Pandas一起使用的领域广泛,包括学术和商业领域,包括金融,经济学,统计学,分析等。在本教程中,我们将学习PythonPandas的各种功能以及如何在实践中使用它们。
pandas安装
安装
pip install pandas
导入
import pandas as pd
from pandas import Series, DataFrame
Series介绍
Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。仅由一组数据即可产生最简单的Series:
>>> import pandas as pd
>>> obj=pd.Series([4,7,-5,3])
>>> obj
0 4
1 7
2 -5
3 3
dtype: int64
Series的组成
Series的字符串表现形式为:索引在左边,值在右边。由于我们没有为数据指定索引,于是会自动创建一个0到N-1(N为数据的长度)的整数型索引。你可以通过Series 的values和index属性获取其数组表示形式和索引对象:
- 索引
- 值
>>> import pandas as pd
>>> obj.values
array([ 4, 7, -5, 3], dtype=int64)
>>> obj.index
RangeIndex(start=0, stop=4, step=1)
Series自定义索引
通常,我们希望所创建的Series带有一个可以对各个数据点进行标记的索引:索引和值是一一对应的关系
>>> obj2=pd.Series([4,7,-5,3],index=['d','b','a','c'])
>>> obj2
d 4
b 7
a -5
c 3
dtype: int64
Series通过索引来获取值
>>> obj2['a']
-5
>>> obj2['d']
4
>>> obj2['c','a','d']
>>> obj2[['c','a','d']]
c 3
a -5
d 4
dtype: int64
Series运算
>>> obj2[obj2>0]
d 4
b 7
c 3
dtype: int64
>>> obj2*2
d 8
b 14
a -10
c 6
dtype: int64
>>> import numpy as np
>>> np.exp(obj2)
d 54.598150
b 1096.633158
a 0.006738
c 20.085537
dtype: float64
Series和字典的关系
还可以将Series看成是一个定长的有序字典,因为它是索引值到数据值的一个映射。它可以用在许多原本需要字典参数的函数中:
判断索引是否存在
>>> 'b' in obj2
True
>>> 'e' in obj2
False
根据字典来创建
1.传入一个字典来创建一个Series
>>> sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
>>> obj3=pd.Series(sdata)
>>> obj3
Ohio 35000
Texas 71000
Oregon 16000
Utah 5000
dtype: int64
2.传入新的索引来改变字典的顺序
由于新增的California没有值与它对应,所以表示数据缺失
>>> states = ['California', 'Ohio', 'Oregon', 'Texas']
>>> obj4 = pd.Series(sdata, index=states)
>>> obj4
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64
3.检测数据的缺失
>>> pd.isnull(obj4)
California True
Ohio False
Oregon False
Texas False
dtype: bool
>>> pd.notnull(obj4)
California False
Ohio True
Oregon True
Texas True
dtype: bool
Series利用索引标签对齐数据
简单的说就是对应索引的值相加
>>> obj3
Ohio 35000
Texas 71000
Oregon 16000
Utah 5000
dtype: int64
>>> obj4
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64
>>> obj3+obj4
California NaN
Ohio 70000.0
Oregon 32000.0
Texas 142000.0
Utah NaN
dtype: float64
Series修改name值
>>> obj4.name='population'
>>> obj4.index.name='state'
>>> obj4
state
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
Name: population, dtype: float64
Series通过赋值修改索引
>>> obj
0 4
1 7
2 -5
3 3
dtype: int64
>>> obj.index=['Bob','Steve','Jeff','Ryan']
>>> obj
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64