numpy数组的索引和切片

numpy数组的索引和切片

基本切片操作

>>> import numpy as np
>>> arr=np.arange(10)
>>> arr
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> arr[5]
5
>>> arr[5:8]
array([5, 6, 7])

切片赋值操作

1.切片赋一个值对应原来数组中的值也会变

>>> arr[5:8]=12
>>> arr
array([ 0,  1,  2,  3,  4, 12, 12, 12,  8,  9])
>>> import numpy as np
>>> arr=np.arange(10)
>>> arr_slice=arr[5:8]
>>> arr_slice[0]=-1
>>> arr_slice
array([-1,  6,  7])
>>> arr
array([ 0,  1,  2,  3,  4, -1,  6,  7,  8,  9])

2.给数组中所有元素赋值

>>> arr[:]=-1
>>> arr
array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1])

3.如果想使用复制的方法,使用copy方法

>>> arr_copy=arr[:].copy()
>>> arr_copy
array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1])
>>> arr_copy[:]=0
>>> arr_copy
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
>>> arr
array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1])

高阶数组索引

>>> import numpy as np
>>> arr2d=np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> arr2d[2]
array([7, 8, 9])
>>> arr2d[0][2]
3
>>> arr2d[0,2]
3

>>> import numpy as np
>>> arr2d=np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> arr2d[2]
array([7, 8, 9])
>>> arr2d[0][2]
3
>>> arr2d[0,2]
3
>>> arr3d=np.array([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]])
>>> arr3d
array([[[ 1,  2,  3],
        [ 4,  5,  6]],

       [[ 7,  8,  9],
        [10, 11, 12]]])
>>> arr3d[0]
array([[1, 2, 3],
       [4, 5, 6]])
>>> old_values=arr3d[0].copy()
>>> arr3d[0]=42
>>> arr3d
array([[[42, 42, 42],
        [42, 42, 42]],

       [[ 7,  8,  9],
        [10, 11, 12]]])
>>> arr3d[1,0]
array([7, 8, 9])
>>> x=arr3d[1]
>>> x
array([[ 7,  8,  9],
       [10, 11, 12]])
>>> x[0]
array([7, 8, 9])

高维数组切片

>>> arr2d[:2]
array([[1, 2, 3],
       [4, 5, 6]])
>>> arr2d[:2,1:]
array([[2, 3],
       [5, 6]])
>>> arr2d[1,:2]
array([4, 5])
>>> arr2d[:2,2]
array([3, 6])
>>> arr2d[:,:1]
array([[1],
       [4],
       [7]])

布尔型索引

1.假设我们有一个用于存储数据的数组以及一个存储姓名的数组(含有重复项)。在这里,我将使用numpy.random中的randn函数生成一些正态分布的随机数据:

>>> import numpy as np
>>> names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
>>> data=np.random.randn(7,4)#7行4列正太分布随机数组
>>> names
array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'], dtype='<U4')
>>> data
array([[ 0.24724057,  2.86939948, -0.82061782, -0.65745818],
       [-0.98602372, -0.69305692, -1.44431904, -0.85490816],
       [-0.73613349,  0.12700976, -1.00588979,  1.10646269],
       [ 1.59110894,  1.68597758,  0.39414277,  2.02308399],
       [-1.05607115, -0.50354292, -0.65820553, -0.77610316],
       [ 1.72237936, -0.07726577,  1.63462647, -0.41943148],
       [ 0.66744687, -1.01756773, -0.59254343,  0.19080575]])

2.假设每个名字都对应data数组中的一行,而我们想要选出对应于名字"Bob"的所有行。跟算术运算一样,数组的比较运算(如==)也是矢量化的。因此,对names和字符串"Bob"的比较运算将会产生一个布尔型数组:

>>> names=='Bob'
array([ True, False, False,  True, False, False, False])

3.布尔数组可以用于数组的索引

获取等于'Bob'的行

>>> data[names=='Bob']
array([[ 0.24724057,  2.86939948, -0.82061782, -0.65745818],
       [ 1.59110894,  1.68597758,  0.39414277,  2.02308399]])

获取不同于'Bob'的行

>>> data[names!='Bob']
array([[-0.98602372, -0.69305692, -1.44431904, -0.85490816],
       [-0.73613349,  0.12700976, -1.00588979,  1.10646269],
       [-1.05607115, -0.50354292, -0.65820553, -0.77610316],
       [ 1.72237936, -0.07726577,  1.63462647, -0.41943148],
       [ 0.66744687, -1.01756773, -0.59254343,  0.19080575]])

4.对布尔索引进行列索引

>>> data[names=='Bob',2:]
array([[-0.82061782, -0.65745818],
       [ 0.39414277,  2.02308399]])
>>> data[names=='Bob',3]
array([-0.65745818,  2.02308399])

5.反转条件符

>>> cond=names=='Will'
>>> cond
array([False, False,  True, False,  True, False, False])
>>> data[~cond]
array([[ 0.24724057,  2.86939948, -0.82061782, -0.65745818],
       [-0.98602372, -0.69305692, -1.44431904, -0.85490816],
       [ 1.59110894,  1.68597758,  0.39414277,  2.02308399],
       [ 1.72237936, -0.07726577,  1.63462647, -0.41943148],
       [ 0.66744687, -1.01756773, -0.59254343,  0.19080575]])

6.布尔条件的运算

除此之外,连接符还有|、&之类

>>> mask=(names=='Bob')|(names=='Will')
>>> mask
array([ True, False,  True,  True,  True, False, False])
>>> data[mask]
array([[ 0.24724057,  2.86939948, -0.82061782, -0.65745818],
       [-0.73613349,  0.12700976, -1.00588979,  1.10646269],
       [ 1.59110894,  1.68597758,  0.39414277,  2.02308399],
       [-1.05607115, -0.50354292, -0.65820553, -0.77610316]])

7.条件选取

普通条件选取

>>> data[data<0]=0
>>> data
array([[0.24724057, 2.86939948, 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        ],
       [0.        , 0.12700976, 0.        , 1.10646269],
       [1.59110894, 1.68597758, 0.39414277, 2.02308399],
       [0.        , 0.        , 0.        , 0.        ],
       [1.72237936, 0.        , 1.63462647, 0.        ],
       [0.66744687, 0.        , 0.        , 0.19080575]])

布尔条件选取

>>> import numpy as np
>>> names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
>>> data=np.random.randn(7,4)#7行4列正太分布随机数组
>>> data
array([[-1.24077681, -0.48320904,  1.22145611,  0.00666619],
       [-0.65078721, -0.03482355,  1.74232625,  0.2979584 ],
       [-1.51669752,  2.04245014,  0.09453898, -0.85531867],
       [-1.51334497,  0.36947066, -0.87016919,  1.35107873],
       [-1.11285867, -2.20906849,  0.38269412,  1.85375798],
       [ 0.95132554, -1.54193589,  1.98741745, -0.60608077],
       [ 0.78902133,  1.41593836,  0.09430052, -0.25057659]])
>>> data[names!='Joe']=7
>>> data
array([[ 7.        ,  7.        ,  7.        ,  7.        ],
       [-0.65078721, -0.03482355,  1.74232625,  0.2979584 ],
       [ 7.        ,  7.        ,  7.        ,  7.        ],
       [ 7.        ,  7.        ,  7.        ,  7.        ],
       [ 7.        ,  7.        ,  7.        ,  7.        ],
       [ 0.95132554, -1.54193589,  1.98741745, -0.60608077],
       [ 0.78902133,  1.41593836,  0.09430052, -0.25057659]])
>>> 

花式索引

1.传入单个索引数组

>>> import numpy as np
>>> arr=np.empty((8,4))#创建8行4列内容为随机值的数组
>>> arr
array([[2.65577744e-260, 7.70858946e+218, 6.01334668e-154,
        4.47593816e-091],
       [7.01413727e-009, 2.96905203e+222, 2.11672643e+214,
        4.56532297e-085],
       [4.78409596e+180, 2.44001263e-152, 2.45981714e-154,
        6.83528875e+212],
       [6.14829725e-071, 1.05161522e-153, 1.05135742e-153,
        2.43902457e-154],
       [4.83245960e+276, 6.03103052e-154, 7.06652000e-096,
        2.65862875e-260],
       [1.76380220e+241, 2.30576063e-310, 9.80013217e+040,
        1.55850644e-312],
       [1.33360318e+241, 4.09842267e-310, 2.48721655e-075,
        1.04922745e-312],
       [1.91217285e-309, 1.18182126e-125, 6.57144273e-299,
        5.54240979e-302]])
>>> for i in range(8):
	arr[i]=i

>>> arr
array([[0., 0., 0., 0.],
       [1., 1., 1., 1.],
       [2., 2., 2., 2.],
       [3., 3., 3., 3.],
       [4., 4., 4., 4.],
       [5., 5., 5., 5.],
       [6., 6., 6., 6.],
       [7., 7., 7., 7.]])
>>> arr[[4,3,0,6]]#选特定的索引下标,选取第4,3,0,6行
array([[4., 4., 4., 4.],
       [3., 3., 3., 3.],
       [0., 0., 0., 0.],
       [6., 6., 6., 6.]])
>>> arr[[-3,-5,-7]]#选择特定的索引下标,选取第-3,-5,-7列
array([[5., 5., 5., 5.],
       [3., 3., 3., 3.],
       [1., 1., 1., 1.]])

2.传入多个索引数组

>>> arr=np.arange(32).reshape((8,4))
>>> arr
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23],
       [24, 25, 26, 27],
       [28, 29, 30, 31]])
>>> arr[[1,5,7,2],[0,3,1,2]]#选取(1,0),(5,3),(7,1),(2,2)对应元素
array([ 4, 23, 29, 10])
>>> arr[[1,5,7,2]][:,[0,3,1,2]]#先选取第1,5,7,2行,再将每行按照0,3,1,2这个顺序交换
array([[ 4,  7,  5,  6],
       [20, 23, 21, 22],
       [28, 31, 29, 30],
       [ 8, 11,  9, 10]])
posted @ 2019-10-02 10:02  梦小冷  阅读(12296)  评论(1编辑  收藏  举报