神经网络中使用Batch Normalization 解决梯度问题
BN本质上解决的是反向传播过程中的梯度问题。
详细点说,反向传播时经过该层的梯度是要乘以该层的参数的,即前向有:
那么反向传播时便有:
那么考虑从l层传到k层的情况,有:
上面这个 便是问题所在。因为网络层很深,如果
大多小于1,那么传到这里的时候梯度会变得很小比如
;而如果
又大多大于1,那么传到这里的时候又会有梯度爆炸问题 比如
。BN所做的就是解决这个梯度传播的问题,因为BN作用抹去了w的scale影响。
具体有:
(
) =
(
)
那么反向求导时便有了:
可以看到此时反向传播乘以的数不再和 的尺度相关,也就是说尽管我们在更新过程中改变了
的值,但是反向传播的梯度却不受影响。更进一步:
即尺度较大的 将获得一个较小的梯度,在同等的学习速率下其获得的更新更少,这样使得整体
的更新更加稳健起来。
总结起来就是BN解决了反向传播过程中的梯度问题(梯度消失和爆炸),同时使得不同scale的 整体更新步调更一致。
人生很长,一秒太短,一个月不长不短刚刚好! 加油少年! ---------LeaningBD
本文来自博客园,作者:青牛梦旅行,转载请注明原文链接:https://www.cnblogs.com/mengxiangtiankongfenwailan/p/9895117.html
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!