ml-模型评估与选择

1.基本概念

   错误率E=分类错误的样本数a/总样本数m;精度=1-a/m

   经验误差/训练误差:在训练集上产生的

   泛化误差:在测试集上产生的=====》要把这个泛化误差降到最小化。

2.评估方法

(1)留出法:在样本中取出30%或20%作为测试集;

(2)交叉验证法:

 

     留一法:交叉验证的特例,k=m,k次,每次取一个作为验证集。

(3)自助法:样本D随机采样抽取一个元素----》D*,再放回,重复m次,就得到了包含m个样本的数据集

       总结,因为自助法的随机抽样会产生误差,所以前两种方法用的较多。

 

posted @ 2017-12-01 15:39  mengxiangjialzh  阅读(192)  评论(0编辑  收藏  举报