libtorch实现一个数码管数字识别网络

这里的数字范围是0~9共10个数字,用5×3的数字矩阵表示,把它当成图像那么可以看成5×3的图片。如下图中的数字0,用“1”代表有颜色(亮),“0”代表没颜色(灭)。

网络是经典的BP神经网络,15个输入,10个输出。当输入是形状“0”时,输出索引为0的数字最大接近于1;当输入是形状“1”时,输出索引为1的数字最大接近于1,以此类推,以达到识别数字的功能。这个网络是我随便设置的参数没有任何优化就可以训练使用。测试环境是VS2017和libtorch1.13.1。下面是头文件:

class LinearSigImpl : public torch::nn::Module
{
public:
    LinearSigImpl(int intput, int output);
    torch::Tensor forward(torch::Tensor x);

private:
    torch::nn::Linear ln;
    torch::nn::Sigmoid sn;
};

TORCH_MODULE(LinearSig);

class Mlp : public torch::nn::Module
{
public:
    Mlp(int input, int outputCount);
    torch::Tensor forward(torch::Tensor x);

private:
    LinearSig ln1;
    LinearSig ln2;
    LinearSig ln3;
    LinearSig output;
};

CPP文件如下。这里换了1个损失函数,用的是SmoothL1Loss函数。在libtorch里有非常多的损失函数和优化方法可以选择,只要合适都可以使用。代码最后我加了个手输5×3的数字识别结果,经过验证,对于有较小干扰的数字可以正确识别:

LinearSigImpl::LinearSigImpl(int input, int output) : 
    ln(nullptr), sn(nullptr)
{
    ln = register_module("ln", torch::nn::Linear(input, output));
    sn = register_module("sn", torch::nn::Sigmoid());
}

torch::Tensor LinearSigImpl::forward(torch::Tensor x)
{
    x = ln->forward(x);
    x = sn->forward(x);
    return x;
}

Mlp::Mlp(int input, int outputCount) : 
    ln1(nullptr), ln2(nullptr), ln3(nullptr), output(nullptr)
{
    const int layer[] = { 30, 30, 20 }; 
    ln1 = register_module("ln1", LinearSig(input, layer[0]));
    ln2 = register_module("ln2", LinearSig(layer[0], layer[1]));
    ln3 = register_module("ln3", LinearSig(layer[1], layer[2]));
    output = register_module("output", LinearSig(layer[2], outputCount));
}

torch::Tensor Mlp::forward(torch::Tensor x)
{
    x = ln1->forward(x);
    x = ln2->forward(x);
    x = ln3->forward(x);
    x = output->forward(x);
    return x;
}

static torch::Tensor inputSample = torch::tensor({
        { 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f }, /* 0 */
        { 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f },
        { 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f },
        { 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f },
        { 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f }, /* 4 */
        { 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f },
        { 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f },
        { 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f },
        { 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f },
        { 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f }, /* 9 */
    });

static torch::Tensor outputSample = torch::tensor({
        { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f },
        { 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f },
        { 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f },
        { 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f },
        { 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f },
        { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f },
        { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f },
        { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f },
        { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f },
        { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f },
    });

int main()
{
    Mlp mechine(15, 10);

    /* 训练过程 */
    torch::optim::SGD optim(mechine.parameters(), torch::optim::SGDOptions(0.2));
    torch::nn::SmoothL1Loss lossFunc;
    mechine.train();
    for (int i = 0; i < 500000; i++)
    {
        torch::Tensor predict = mechine.forward(inputSample);
        torch::Tensor loss = lossFunc(predict, outputSample);
        optim.zero_grad();
        loss.backward();
        optim.step();
        if (i % 5000 == 0)
        {
            /* 每5000次循环输出一次损失函数值 */
            cout << "LOOP:" << i << ",LOSS=" << loss.item() << endl;
        }
    }

    /* 做个测试 */
    at::Tensor x = torch::tensor({
            { 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.1f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f }, /* 1 */
            { 1.0f, 0.9f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f }, /* 0 */
            { 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.9f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f }, /* 2 */
        });
    at::Tensor y = mechine.forward(x);
    std::tuple<torch::Tensor, torch::Tensor> maxValue = y.max(1);
    for (int i = 0; i < 3; i++)
    {
        cout << "" << i << "形状预测输出=" << std::get<1>(maxValue)[i].item().toInt() << endl;
    }

    vector<float> inputs;
    cout << "输入5*3的数字[每个数字0~1之间]:" << endl;
    for (int i = 0; i < 15; i++)
    {
        float number;
        cin >> number;
        inputs.push_back(number);
    }
    x = torch::from_blob(inputs.data(), { 1, 15 }, c10::TensorOptions(c10::ScalarType::Float));
    y = mechine.forward(x);
    maxValue = y.max(1);
    cout << "预测输出=" << std::get<1>(maxValue)[0].item().toInt() << endl;

    return 0;
}

控制台输出是:

...
LOOP:475000,LOSS=0.000606246
LOOP:480000,LOSS=0.000572149
LOOP:485000,LOSS=0.000541376
LOOP:490000,LOSS=0.000513536
LOOP:495000,LOSS=0.000488265
第0形状预测输出=1
第1形状预测输出=0
第2形状预测输出=2
输入5*3的数字[每个数字0~1之间]:
1       0.9     1
0.1     0       0.98
0       0.1     0.97
0.3     0       0.92
0       0       1
预测输出=7

 

posted @ 2024-03-18 09:49  兜尼完  阅读(42)  评论(0编辑  收藏  举报