AES加密算法
AES加密算法
记有如下定义:
- State: 对明文加密的中间状态, 是一个\(4*N_b\)的矩阵, 初始状态等于输入;
- CipherKey: 密钥, 可以看成一个\(4*N_k\)的矩阵;
- \(N_b\): State矩阵的列数, \(N_b=4\);
- \(N_k\): 密钥字长(1字=32bits), \(N_k=4,6,8\);
- \(N_r\): 加密的轮数, \(N_r=10,12,14\);
- RoundKey: 由CipherKey产生, 每一轮加密计算对应一个RoundKey;
- KeyExpansion: 将CipherKey转为RoundKey;
- AddRoundKey: 使用RoundKey对State进行加密计算(RoundKey和State异或操作);
- SubBytes: 使用非线性字节替换表sbox对State进行替换操作;
- ShiftRows: 对State矩阵后三行进行偏移操作;
- MixColumns: 对State矩阵的所有列进行列混合操作;
密钥长度和\(N_b, N_k, N_r\)对应关系如下表:
\(N_k\) | \(N_b\) | \(N_r\) | |
---|---|---|---|
AES-128 | 4 | 4 | 10 |
AES-192 | 6 | 4 | 12 |
AES-256 | 8 | 4 | 14 |
AES算法流程
AES算法伪代码如下:
Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin
byte state[4, Nb]
state = in
AddRoundkey(state, w[0, Nb-1])
for round = 1 step 1 to Nr-1
SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb - 1])
end
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb - 1])
out = state
end
InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr_1)])
begin
byte stae[4, Nb]
state = in
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb - 1])
for round = Nr-1 step -1 downto 1
InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb - 1])
InvMixColumns(state)
end
InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w[0, Nb-1])
out = state
end
// 另一种等效的加解密步骤, Intel AES指令集采用的是这种步骤(两者加密密钥扩展是一样的)
// SubBytes和ShiftRows可以交换
// InvMixColumns(AddRoundKey(state, RoundKey)) = AddRoundKey(InvMixColumns(state), InvMixColumns(RoundKey)
Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin
byte state[4, Nb]
state = in
AddRoundkey(state, w[0, Nb-1])
for round = 1 step 1 to Nr-1
ShiftRows(state)
SubBytes(state)
MixColumns(state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb - 1])
end
ShiftRows(state)
SubBytes(state)
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb - 1])
out = state
end
InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr_1)])
begin
byte stae[4, Nb]
state = in
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb - 1])
for round = Nr-1 step -1 downto 1
InvSubBytes(state)
InvShiftRows(state)
InvMixColumns(state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb - 1])
end
InvSubBytes(state)
InvShiftRows(state)
AddRoundKey(state, w[0, Nb-1])
out = state
end
// 解密密钥扩展需要增加如下步骤
for i = 0 step 1 to (Nb*(Nr+1)-1)
dw[i] = w[i]
end
// 增加的运算
for round=1 step 1 to Nr-1
InvMixColumns(dw[round*Nb, (round+1)*Nb-1])
end for
SubBytes变换
记待替换字节为0xmn
, 那么替换后的字节为sbox[16 * 0xm + 0xn]
, 对应的逆变换为isbox[16 * 0xm + 0xn]
;
假设0xab
对应的多项式为\(f(x)\), sbox的计算步骤如下:
- 求\(f(x)\)的在有限域\(GF(2^8)\)中的逆: \(f(x)*g(x)=1 \mod(x^8+x^4+x^3+x+1)\);
- 记\(n(x)\)对应的字节为\(b_0b_1 \cdots b_7\), 按照如下公式依次求\([0,255]\)在\(GF(2)\)上的放射变换值;
\[b_{i}^{'} = b_{i} \oplus b_{(i+4)mod8} \oplus b_{(i+5)mod8} \oplus b_{(i+6)mod8} \oplus b_{(i+7)mod8} \oplus c_{i}; \quad c=0x63
\]
ShiftRows变换
记state矩阵中待替换元素为\(s_{r,c}\), 替换后的元素为\(s_{r,c}^{'}\). 其中, \(r,c\)表示其在矩阵中的行和列.
那么, 替换前后的元素关系为:
\[s_{r,c}^{'} = s_{r, (c+(r \% N_b)) \% N_b}
\]
上式对应的逆变换为:
\[s_{r,c} = s_{r, (c+(N_b - r)) \% N_b}^{'}
\]
MixColumns变换
AES使用\(a(x)\)对列进行变换, \(a(x)\)定义如下:
\[a(x) = \{03\}x^3 + \{01\}x^2 + \{01\}x + \{02\} \\
a^{-1}(x) = \{0b\}x^3 + \{0d\}x^2 + \{09\}x + \{0e\}
\]
则, MixColumns对state变换前后的关系如下:
\[\begin{aligned}
& s^{'}(x) = a(x) \otimes s(x) \\
& \left[
\begin{matrix}
s^{'}_{0,c} \\ s^{'}_{1,c} \\ s^{'}_{2,c} \\ s^{'}_{3,c}
\end{matrix}
\right] = \left[
\begin{matrix}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{matrix}
\right] \left[
\begin{matrix}
s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c}
\end{matrix}
\right]
\end{aligned}
\]
对应的逆变换为:
\[\begin{aligned}
& s^{'}(x) = a^{-1}(x) \otimes s(x) \\
& \left[
\begin{matrix}
s^{'}_{0,c} \\ s^{'}_{1,c} \\ s^{'}_{2,c} \\ s^{'}_{3,c}
\end{matrix}
\right] = \left[
\begin{matrix}
0e & 0b & 0d & 09 \\
09 & 0e & 0b & 0d \\
0d & 09 & 0e & 0b \\
0b & 0d & 09 & 0e
\end{matrix}
\right] \left[
\begin{matrix}
s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c}
\end{matrix}
\right]
\end{aligned}
\]
AddRoundKey变换
\[\left[
\begin{matrix}
s^{'}_{0,c} & s^{'}_{1,c} & s^{'}_{2,c} & s^{'}_{3,c}
\end{matrix}
\right]
= \left[
\begin{matrix}
s_{0,c} & s_{1,c} & s_{2,c} & s_{3,c}
\end{matrix}
\right] \oplus \left[
\begin{matrix}
w_{round*N_b+0} & w_{round*N_b+1} & w_{round*N_b+2} & w_{round*N_b+3}
\end{matrix}
\right]
\]
异或运算是可逆的, 对应的逆变换公式不变;
RoundKey计算
RoundKey计算算法流程如下:
RoundKey(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
begin
word temp
i = 0
while i < Nk
w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
i += 1
end
i = Nk
while i < Nb * (Nr+1)
temp = w[i-1]
if i % Nk == 0
temp = SubWord(RotWord(temp)) ^ Rcon[i/Nk]
else if Nk > 6 && i % Nk == 4
temp = SubWord(temp)
end
w[i] = w[i-Nk] ^ temp
i = i + 1
end
end
- RotWord: 将\([a_0,a_1,a_2,a_3]\)翻转为\([a_1,a_2,a_3,a_0]\);
- SubWord: 通过sbox完成非线性变换;
- Rcon: [\(x^{i-1} mod(x^8+x^4+x^3+x+1)\), {00}, {00}, {00}], i = [1-10];
附录
非线性字节替换表
const sbox: [u8; 256] = [
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,
];
const isbox: [u8; 256]= [
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d,
];
const rcon: [u32; 10] = [
0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000,
0x40000000, 0x80000000, 0x1b000000, 0x36000000,
];