Spark On YARN启动流程源码分析(一)
本文主要参考:
a. https://www.cnblogs.com/yy3b2007com/p/10934090.html
0. 说明
a. 关于spark源码会不定期的更新与补充
b. 对于spark源码的历史博文,也会不定期修改、增加、优化
c. spark源码对应的spark版本为2.4.1
1. 引导
该篇主要讲解执行spark-submit.sh脚本时将任务提交给Yarn阶段代码分析。其中spark的代码版本为2.4.1.
(1) spark-submit的入口函数
一般提交一个spark作业的方式采用spark-submit来提交
# Run on a Spark standalone cluster ./bin/spark-submit \ --class org.apache.spark.examples.SparkPi \ --master spark://207.184.161.138:7077 \ --executor-memory 20G \ --total-executor-cores 100 \ /path/to/examples.jar \ 1000
这个是提交到standalone集群的方式,其中脚本spark-submit从spark2.4的安装bin目录下找到
#!/usr/bin/env bash if [ -z "${SPARK_HOME}" ]; then source "$(dirname "$0")"/find-spark-home fi # disable randomized hash for string in Python 3.3+ export PYTHONHASHSEED=0 exec "${SPARK_HOME}"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"
从如上脚本内容上来看,可以发现:
a. spark-submit提交任务时,实际上最终是调用了SparkSubmit类。
b. 调用bin目录下的spark-class脚本,实际上执行的是java进程命令。
从SparkSubmit的伴生类上可以看到入口main函数:
object SparkSubmit extends CommandLineUtils with Logging { // Cluster managers -------- Spark集群管理的模式 private val YARN = 1 private val STANDALONE = 2 private val MESOS = 4 private val LOCAL = 8 private val KUBERNETES = 16 private val ALL_CLUSTER_MGRS = YARN | STANDALONE | MESOS | LOCAL | KUBERNETES // Deploy modes ---------- 部署模式 private val CLIENT = 1 private val CLUSTER = 2 private val ALL_DEPLOY_MODES = CLIENT | CLUSTER // Special primary resource names that represent shells rather than application jars. private val SPARK_SHELL = "spark-shell" private val PYSPARK_SHELL = "pyspark-shell" private val SPARKR_SHELL = "sparkr-shell" private val SPARKR_PACKAGE_ARCHIVE = "sparkr.zip" private val R_PACKAGE_ARCHIVE = "rpkg.zip" private val CLASS_NOT_FOUND_EXIT_STATUS = 101 // Following constants are visible for testing. private[deploy] val YARN_CLUSTER_SUBMIT_CLASS = "org.apache.spark.deploy.yarn.YarnClusterApplication" // Yarn集群的提交类 private[deploy] val REST_CLUSTER_SUBMIT_CLASS = classOf[RestSubmissionClientApp].getName() // 集群模式提交的其他类名 private[deploy] val STANDALONE_CLUSTER_SUBMIT_CLASS = classOf[ClientApp].getName() // 独立部署模式提交类 private[deploy] val KUBERNETES_CLUSTER_SUBMIT_CLASS = "org.apache.spark.deploy.k8s.submit.KubernetesClientApplication" // K8s集群提交的类 override def main(args: Array[String]): Unit = { // 构建SparkSubmit实例 val submit = new SparkSubmit() { self => // 重写SparkSubmit的解析参数方法 override protected def parseArguments(args: Array[String]): SparkSubmitArguments = { // 构建SparkSubmitArguments对象 new SparkSubmitArguments(args) { // 重写logInfo和logWarning,调用该类中如下定义的2个方法 override protected def logInfo(msg: => String): Unit = self.logInfo(msg) override protected def logWarning(msg: => String): Unit = self.logWarning(msg) } } override protected def logInfo(msg: => String): Unit = printMessage(msg) override protected def logWarning(msg: => String): Unit = printMessage(s"Warning: $msg") override def doSubmit(args: Array[String]): Unit = { try { super.doSubmit(args) } catch { case e: SparkUserAppException => exitFn(e.exitCode) } } } // 执行提交代码 submit.doSubmit(args) } /** * Return whether the given primary resource represents a user jar. */ private[deploy] def isUserJar(res: String): Boolean = { !isShell(res) && !isPython(res) && !isInternal(res) && !isR(res) } /** * Return whether the given primary resource represents a shell. */ private[deploy] def isShell(res: String): Boolean = { (res == SPARK_SHELL || res == PYSPARK_SHELL || res == SPARKR_SHELL) } /** * Return whether the given main class represents a sql shell. */ private[deploy] def isSqlShell(mainClass: String): Boolean = { mainClass == "org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver" } /** * Return whether the given main class represents a thrift server. */ private def isThriftServer(mainClass: String): Boolean = { mainClass == "org.apache.spark.sql.hive.thriftserver.HiveThriftServer2" } /** * Return whether the given primary resource requires running python. */ private[deploy] def isPython(res: String): Boolean = { res != null && res.endsWith(".py") || res == PYSPARK_SHELL } /** * Return whether the given primary resource requires running R. */ private[deploy] def isR(res: String): Boolean = { res != null && res.endsWith(".R") || res == SPARKR_SHELL } private[deploy] def isInternal(res: String): Boolean = { res == SparkLauncher.NO_RESOURCE } }
在SparkSubmit类中doSubmit函数实现十分简单:
def doSubmit(args: Array[String]): Unit = { // Initialize logging if it hasn't been done yet. Keep track of whether logging needs to // be reset before the application starts. val uninitLog = initializeLogIfNecessary(true, silent = true) // 解析参数信息 val appArgs = parseArguments(args) if (appArgs.verbose) { logInfo(appArgs.toString) } appArgs.action match { case SparkSubmitAction.SUBMIT => submit(appArgs, uninitLog) // 应用提交 case SparkSubmitAction.KILL => kill(appArgs) // 应用删除(只适用于standalone和memos集群) case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs) // 查询应用状态(只适用于standalone和memos集群) case SparkSubmitAction.PRINT_VERSION => printVersion() // 打印应用版本信息 } }
不难明白这是一个主控函数,根据接受的action类型,调用对应的处理:
a. case SparkSubmitAction.SUBMIT => submit(appArgs, uninitLog)---提交spark任务
b.case SparkSubmitAction.KILL => kill(appArgs)---杀掉spark任务
c. case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs)---获取任务状态
d. case SparkSubmitAction.PRINT_VERSION => printVersion()---打印版本信息
我们想明白spark任务提交的具体实现类,需要进入submit函数查看具体的业务:
/** * 使用提供的参数信息来提交application * Submit the application using the provided parameters. * * 运行包含两步: * 第一步,我们通过设置适当的类路径,系统属性和应用程序参数来准备启动环境,以便基于集群管理和部署模式运行子主类。 * 第二步,我们使用这个启动环境来调用子主类的主方法。 * This runs in two steps. First, we prepare the launch environment by setting up * the appropriate classpath, system properties, and application arguments for * running the child main class based on the cluster manager and the deploy mode. * Second, we use this launch environment to invoke the main method of the child * main class. */ @tailrec private def submit(args: SparkSubmitArguments, uninitLog: Boolean): Unit = { // 通过设置适当的类路径,系统属性和应用程序参数来准备启动环境,以便基于集群管理和部署模式运行子主类。 val (childArgs, childClasspath, sparkConf, childMainClass) = prepareSubmitEnvironment(args) def doRunMain(): Unit = { if (args.proxyUser != null) { val proxyUser = UserGroupInformation.createProxyUser(args.proxyUser, UserGroupInformation.getCurrentUser()) try { proxyUser.doAs(new PrivilegedExceptionAction[Unit]() { override def run(): Unit = { runMain(childArgs, childClasspath, sparkConf, childMainClass, args.verbose) } }) } catch { case e: Exception => // Hadoop's AuthorizationException suppresses the exception's stack trace, which // makes the message printed to the output by the JVM not very helpful. Instead, // detect exceptions with empty stack traces here, and treat them differently. if (e.getStackTrace().length == 0) { error(s"ERROR: ${e.getClass().getName()}: ${e.getMessage()}") } else { throw e } } } else { runMain(childArgs, childClasspath, sparkConf, childMainClass, args.verbose) } } // Let the main class re-initialize the logging system once it starts. if (uninitLog) { Logging.uninitialize() } //在独立集群模式下,有两个提交网关: //(1)使用o.a.s.deploy.Client作为包装器的传统RPC网关 //(2)Spark 1.3中引入了新的基于REST的网关 //后者是Spark 1.3的默认行为,但如果主端点不是REST服务器,则Spark Submit将故障转移到使用旧网关。 // In standalone cluster mode, there are two submission gateways: // (1) The traditional RPC gateway using o.a.s.deploy.Client as a wrapper // (2) The new REST-based gateway introduced in Spark 1.3 // The latter is the default behavior as of Spark 1.3, but Spark submit will fail over // to use the legacy gateway if the master endpoint turns out to be not a REST server. if (args.isStandaloneCluster && args.useRest) { try { logInfo("Running Spark using the REST application submission protocol.") doRunMain() } catch { // Fail over to use the legacy submission gateway case e: SubmitRestConnectionException => logWarning(s"Master endpoint ${args.master} was not a REST server. " + "Falling back to legacy submission gateway instead.") args.useRest = false submit(args, false) } // In all other modes, just run the main class as prepared // 其他模式,只需直接运行主类 } else { doRunMain() } }
其中:
prepareSubmitEnvironment方法通过设置适当的类路径,系统属性和应用程序参数来准备启动环境,以便基于集群管理和部署模式运行子主类
submit(…)函数最后一行会调用该函数内部自定义函数doRunMain(),该函数会根据应用程序参数(args.proxyUser)做一次判断处理:
a. 如果是代理用户,则使用proxyUser 对runMain()函数包装调用;
b. 如果非代理用户,则直接调用runMain()函数。
(2) 任务运行环境准备
通过设置适当的类路径,系统属性和应用程序参数来准备启动环境,以便基于集群管理和部署模式运行子主类。
val (childArgs, childClasspath, sparkConf, childMainClass) = prepareSubmitEnvironment(args)
/** * 未提交的应用程序准备环境 * Prepare the environment for submitting an application. * * @param args the parsed SparkSubmitArguments used for environment preparation. * @param conf the Hadoop Configuration, this argument will only be set in unit test. * 返回一个4元组(childArgs, childClasspath, sparkConf, childMainClass) * childArgs:子进程的参数 * childClasspath:子级的类路径条目列表 * sparkConf:系统参数map集合 * childMainClass:子级的主类 * @return a 4-tuple: * (1) the arguments for the child process, * (2) a list of classpath entries for the child, * (3) a map of system properties, and * (4) the main class for the child * * Exposed for testing. */ private[deploy] def prepareSubmitEnvironment( args: SparkSubmitArguments, conf: Option[HadoopConfiguration] = None) : (Seq[String], Seq[String], SparkConf, String) = { // Return values val childArgs = new ArrayBuffer[String]() val childClasspath = new ArrayBuffer[String]() val sparkConf = new SparkConf() var childMainClass = "" // 设置集群管理器, // 从这个列表中可以得到信息:spark目前支持的集群管理器包含:YARN,STANDLONE,MESOS,KUBERNETES,LOCAL, // 在spark-submit参数的--master中指定。 // Set the cluster manager val clusterManager: Int = args.master match { case "yarn" => YARN case "yarn-client" | "yarn-cluster" => // spark2.0之前可以使用yarn-cleint,yarn-cluster作为--master参数,从spark2.0起,不再支持,这里默认自动转化为yarn,并给出警告信息。 logWarning(s"Master ${args.master} is deprecated since 2.0." + " Please use master \"yarn\" with specified deploy mode instead.") YARN case m if m.startsWith("spark") => STANDALONE case m if m.startsWith("mesos") => MESOS case m if m.startsWith("k8s") => KUBERNETES case m if m.startsWith("local") => LOCAL case _ => error("Master must either be yarn or start with spark, mesos, k8s, or local") -1 } // 设置部署模式--deploy-mode,默认为client模式。 // Set the deploy mode; default is client mode var deployMode: Int = args.deployMode match { case "client" | null => CLIENT case "cluster" => CLUSTER case _ => error("Deploy mode must be either client or cluster") -1 } // 由于”yarn-cluster“和”yarn-client“方式已被弃用,因此封装了--master和--deploy-mode。 // 如果只指定了一个--master和--deploy-mode,我们有一些逻辑来推断它们之间的关系;如果它们不一致,我们可以提前退出。 // Because the deprecated way of specifying "yarn-cluster" and "yarn-client" encapsulate both // the master and deploy mode, we have some logic to infer the master and deploy mode // from each other if only one is specified, or exit early if they are at odds. if (clusterManager == YARN) { (args.master, args.deployMode) match { case ("yarn-cluster", null) => deployMode = CLUSTER args.master = "yarn" case ("yarn-cluster", "client") => error("Client deploy mode is not compatible with master \"yarn-cluster\"") case ("yarn-client", "cluster") => error("Cluster deploy mode is not compatible with master \"yarn-client\"") case (_, mode) => args.master = "yarn" } // 如果我们想去使用YARN的话,必须确保它包含在我们构建中。 // Make sure YARN is included in our build if we're trying to use it if (!Utils.classIsLoadable(YARN_CLUSTER_SUBMIT_CLASS) && !Utils.isTesting) { error( "Could not load YARN classes. " + "This copy of Spark may not have been compiled with YARN support.") } } if (clusterManager == KUBERNETES) { args.master = Utils.checkAndGetK8sMasterUrl(args.master) // Make sure KUBERNETES is included in our build if we're trying to use it if (!Utils.classIsLoadable(KUBERNETES_CLUSTER_SUBMIT_CLASS) && !Utils.isTesting) { error( "Could not load KUBERNETES classes. " + "This copy of Spark may not have been compiled with KUBERNETES support.") } } // 下边的一些模式是不支持,尽早让它们失败。 // Fail fast, the following modes are not supported or applicable (clusterManager, deployMode) match { case (STANDALONE, CLUSTER) if args.isPython => error("Cluster deploy mode is currently not supported for python " + "applications on standalone clusters.") case (STANDALONE, CLUSTER) if args.isR => error("Cluster deploy mode is currently not supported for R " + "applications on standalone clusters.") case (LOCAL, CLUSTER) => error("Cluster deploy mode is not compatible with master \"local\"") case (_, CLUSTER) if isShell(args.primaryResource) => error("Cluster deploy mode is not applicable to Spark shells.") case (_, CLUSTER) if isSqlShell(args.mainClass) => error("Cluster deploy mode is not applicable to Spark SQL shell.") case (_, CLUSTER) if isThriftServer(args.mainClass) => error("Cluster deploy mode is not applicable to Spark Thrift server.") case _ => } // 如果args.deployMode为null的话,给它赋值更新。稍后它将作为Spark的属性向下传递 // Update args.deployMode if it is null. It will be passed down as a Spark property later. (args.deployMode, deployMode) match { case (null, CLIENT) => args.deployMode = "client" case (null, CLUSTER) => args.deployMode = "cluster" case _ => } // 根据资源管理器和部署模式,进行逻辑判断出几种特殊运行方式。 val isYarnCluster = clusterManager == YARN && deployMode == CLUSTER val isMesosCluster = clusterManager == MESOS && deployMode == CLUSTER val isStandAloneCluster = clusterManager == STANDALONE && deployMode == CLUSTER val isKubernetesCluster = clusterManager == KUBERNETES && deployMode == CLUSTER val isMesosClient = clusterManager == MESOS && deployMode == CLIENT if (!isMesosCluster && !isStandAloneCluster) { // Resolve maven dependencies if there are any and add classpath to jars. Add them to py-files // too for packages that include Python code val resolvedMavenCoordinates = DependencyUtils.resolveMavenDependencies( args.packagesExclusions, args.packages, args.repositories, args.ivyRepoPath, args.ivySettingsPath) if (!StringUtils.isBlank(resolvedMavenCoordinates)) { args.jars = mergeFileLists(args.jars, resolvedMavenCoordinates) if (args.isPython || isInternal(args.primaryResource)) { args.pyFiles = mergeFileLists(args.pyFiles, resolvedMavenCoordinates) } } // install any R packages that may have been passed through --jars or --packages. // Spark Packages may contain R source code inside the jar. if (args.isR && !StringUtils.isBlank(args.jars)) { RPackageUtils.checkAndBuildRPackage(args.jars, printStream, args.verbose) } } args.sparkProperties.foreach { case (k, v) => sparkConf.set(k, v) } val hadoopConf = conf.getOrElse(SparkHadoopUtil.newConfiguration(sparkConf)) val targetDir = Utils.createTempDir() // assure a keytab is available from any place in a JVM if (clusterManager == YARN || clusterManager == LOCAL || isMesosClient) { if (args.principal != null) { if (args.keytab != null) { require(new File(args.keytab).exists(), s"Keytab file: ${args.keytab} does not exist") // Add keytab and principal configurations in sysProps to make them available // for later use; e.g. in spark sql, the isolated class loader used to talk // to HiveMetastore will use these settings. They will be set as Java system // properties and then loaded by SparkConf sparkConf.set(KEYTAB, args.keytab) sparkConf.set(PRINCIPAL, args.principal) UserGroupInformation.loginUserFromKeytab(args.principal, args.keytab) } } } // Resolve glob path for different resources. args.jars = Option(args.jars).map(resolveGlobPaths(_, hadoopConf)).orNull args.files = Option(args.files).map(resolveGlobPaths(_, hadoopConf)).orNull args.pyFiles = Option(args.pyFiles).map(resolveGlobPaths(_, hadoopConf)).orNull args.archives = Option(args.archives).map(resolveGlobPaths(_, hadoopConf)).orNull lazy val secMgr = new SecurityManager(sparkConf) // In client mode, download remote files. var localPrimaryResource: String = null var localJars: String = null var localPyFiles: String = null if (deployMode == CLIENT) { localPrimaryResource = Option(args.primaryResource).map { downloadFile(_, targetDir, sparkConf, hadoopConf, secMgr) }.orNull localJars = Option(args.jars).map { downloadFileList(_, targetDir, sparkConf, hadoopConf, secMgr) }.orNull localPyFiles = Option(args.pyFiles).map { downloadFileList(_, targetDir, sparkConf, hadoopConf, secMgr) }.orNull } // When running in YARN, for some remote resources with scheme: // 1. Hadoop FileSystem doesn't support them. // 2. We explicitly bypass Hadoop FileSystem with "spark.yarn.dist.forceDownloadSchemes". // We will download them to local disk prior to add to YARN's distributed cache. // For yarn client mode, since we already download them with above code, so we only need to // figure out the local path and replace the remote one. if (clusterManager == YARN) { val forceDownloadSchemes = sparkConf.get(FORCE_DOWNLOAD_SCHEMES) def shouldDownload(scheme: String): Boolean = { forceDownloadSchemes.contains("*") || forceDownloadSchemes.contains(scheme) || Try { FileSystem.getFileSystemClass(scheme, hadoopConf) }.isFailure } def downloadResource(resource: String): String = { val uri = Utils.resolveURI(resource) uri.getScheme match { case "local" | "file" => resource case e if shouldDownload(e) => val file = new File(targetDir, new Path(uri).getName) if (file.exists()) { file.toURI.toString } else { downloadFile(resource, targetDir, sparkConf, hadoopConf, secMgr) } case _ => uri.toString } } args.primaryResource = Option(args.primaryResource).map { downloadResource }.orNull args.files = Option(args.files).map { files => Utils.stringToSeq(files).map(downloadResource).mkString(",") }.orNull args.pyFiles = Option(args.pyFiles).map { pyFiles => Utils.stringToSeq(pyFiles).map(downloadResource).mkString(",") }.orNull args.jars = Option(args.jars).map { jars => Utils.stringToSeq(jars).map(downloadResource).mkString(",") }.orNull args.archives = Option(args.archives).map { archives => Utils.stringToSeq(archives).map(downloadResource).mkString(",") }.orNull } // If we're running a python app, set the main class to our specific python runner if (args.isPython && deployMode == CLIENT) { if (args.primaryResource == PYSPARK_SHELL) { args.mainClass = "org.apache.spark.api.python.PythonGatewayServer" } else { // If a python file is provided, add it to the child arguments and list of files to deploy. // Usage: PythonAppRunner <main python file> <extra python files> [app arguments] args.mainClass = "org.apache.spark.deploy.PythonRunner" args.childArgs = ArrayBuffer(localPrimaryResource, localPyFiles) ++ args.childArgs } if (clusterManager != YARN) { // The YARN backend handles python files differently, so don't merge the lists. args.files = mergeFileLists(args.files, args.pyFiles) } } if (localPyFiles != null) { sparkConf.set("spark.submit.pyFiles", localPyFiles) } // In YARN mode for an R app, add the SparkR package archive and the R package // archive containing all of the built R libraries to archives so that they can // be distributed with the job if (args.isR && clusterManager == YARN) { val sparkRPackagePath = RUtils.localSparkRPackagePath if (sparkRPackagePath.isEmpty) { error("SPARK_HOME does not exist for R application in YARN mode.") } val sparkRPackageFile = new File(sparkRPackagePath.get, SPARKR_PACKAGE_ARCHIVE) if (!sparkRPackageFile.exists()) { error(s"$SPARKR_PACKAGE_ARCHIVE does not exist for R application in YARN mode.") } val sparkRPackageURI = Utils.resolveURI(sparkRPackageFile.getAbsolutePath).toString // Distribute the SparkR package. // Assigns a symbol link name "sparkr" to the shipped package. args.archives = mergeFileLists(args.archives, sparkRPackageURI + "#sparkr") // Distribute the R package archive containing all the built R packages. if (!RUtils.rPackages.isEmpty) { val rPackageFile = RPackageUtils.zipRLibraries(new File(RUtils.rPackages.get), R_PACKAGE_ARCHIVE) if (!rPackageFile.exists()) { error("Failed to zip all the built R packages.") } val rPackageURI = Utils.resolveURI(rPackageFile.getAbsolutePath).toString // Assigns a symbol link name "rpkg" to the shipped package. args.archives = mergeFileLists(args.archives, rPackageURI + "#rpkg") } } // TODO: Support distributing R packages with standalone cluster if (args.isR && clusterManager == STANDALONE && !RUtils.rPackages.isEmpty) { error("Distributing R packages with standalone cluster is not supported.") } // TODO: Support distributing R packages with mesos cluster if (args.isR && clusterManager == MESOS && !RUtils.rPackages.isEmpty) { error("Distributing R packages with mesos cluster is not supported.") } // If we're running an R app, set the main class to our specific R runner if (args.isR && deployMode == CLIENT) { if (args.primaryResource == SPARKR_SHELL) { args.mainClass = "org.apache.spark.api.r.RBackend" } else { // If an R file is provided, add it to the child arguments and list of files to deploy. // Usage: RRunner <main R file> [app arguments] args.mainClass = "org.apache.spark.deploy.RRunner" args.childArgs = ArrayBuffer(localPrimaryResource) ++ args.childArgs args.files = mergeFileLists(args.files, args.primaryResource) } } if (isYarnCluster && args.isR) { // In yarn-cluster mode for an R app, add primary resource to files // that can be distributed with the job args.files = mergeFileLists(args.files, args.primaryResource) } // Special flag to avoid deprecation warnings at the client sys.props("SPARK_SUBMIT") = "true" // A list of rules to map each argument to system properties or command-line options in // each deploy mode; we iterate through these below val options = List[OptionAssigner]( // All cluster managers OptionAssigner(args.master, ALL_CLUSTER_MGRS, ALL_DEPLOY_MODES, confKey = "spark.master"), OptionAssigner(args.deployMode, ALL_CLUSTER_MGRS, ALL_DEPLOY_MODES, confKey = "spark.submit.deployMode"), OptionAssigner(args.name, ALL_CLUSTER_MGRS, ALL_DEPLOY_MODES, confKey = "spark.app.name"), OptionAssigner(args.ivyRepoPath, ALL_CLUSTER_MGRS, CLIENT, confKey = "spark.jars.ivy"), OptionAssigner(args.driverMemory, ALL_CLUSTER_MGRS, CLIENT, confKey = "spark.driver.memory"), OptionAssigner(args.driverExtraClassPath, ALL_CLUSTER_MGRS, ALL_DEPLOY_MODES, confKey = "spark.driver.extraClassPath"), OptionAssigner(args.driverExtraJavaOptions, ALL_CLUSTER_MGRS, ALL_DEPLOY_MODES, confKey = "spark.driver.extraJavaOptions"), OptionAssigner(args.driverExtraLibraryPath, ALL_CLUSTER_MGRS, ALL_DEPLOY_MODES, confKey = "spark.driver.extraLibraryPath"), // Propagate attributes for dependency resolution at the driver side OptionAssigner(args.packages, STANDALONE | MESOS, CLUSTER, confKey = "spark.jars.packages"), OptionAssigner(args.repositories, STANDALONE | MESOS, CLUSTER, confKey = "spark.jars.repositories"), OptionAssigner(args.ivyRepoPath, STANDALONE | MESOS, CLUSTER, confKey = "spark.jars.ivy"), OptionAssigner(args.packagesExclusions, STANDALONE | MESOS, CLUSTER, confKey = "spark.jars.excludes"), // Yarn only OptionAssigner(args.queue, YARN, ALL_DEPLOY_MODES, confKey = "spark.yarn.queue"), OptionAssigner(args.numExecutors, YARN, ALL_DEPLOY_MODES, confKey = "spark.executor.instances"), OptionAssigner(args.pyFiles, YARN, ALL_DEPLOY_MODES, confKey = "spark.yarn.dist.pyFiles"), OptionAssigner(args.jars, YARN, ALL_DEPLOY_MODES, confKey = "spark.yarn.dist.jars"), OptionAssigner(args.files, YARN, ALL_DEPLOY_MODES, confKey = "spark.yarn.dist.files"), OptionAssigner(args.archives, YARN, ALL_DEPLOY_MODES, confKey = "spark.yarn.dist.archives"), OptionAssigner(args.principal, YARN, ALL_DEPLOY_MODES, confKey = "spark.yarn.principal"), OptionAssigner(args.keytab, YARN, ALL_DEPLOY_MODES, confKey = "spark.yarn.keytab"), // Other options OptionAssigner(args.executorCores, STANDALONE | YARN | KUBERNETES, ALL_DEPLOY_MODES, confKey = "spark.executor.cores"), OptionAssigner(args.executorMemory, STANDALONE | MESOS | YARN | KUBERNETES, ALL_DEPLOY_MODES, confKey = "spark.executor.memory"), OptionAssigner(args.totalExecutorCores, STANDALONE | MESOS | KUBERNETES, ALL_DEPLOY_MODES, confKey = "spark.cores.max"), OptionAssigner(args.files, LOCAL | STANDALONE | MESOS | KUBERNETES, ALL_DEPLOY_MODES, confKey = "spark.files"), OptionAssigner(args.jars, LOCAL, CLIENT, confKey = "spark.jars"), OptionAssigner(args.jars, STANDALONE | MESOS | KUBERNETES, ALL_DEPLOY_MODES, confKey = "spark.jars"), OptionAssigner(args.driverMemory, STANDALONE | MESOS | YARN | KUBERNETES, CLUSTER, confKey = "spark.driver.memory"), OptionAssigner(args.driverCores, STANDALONE | MESOS | YARN | KUBERNETES, CLUSTER, confKey = "spark.driver.cores"), OptionAssigner(args.supervise.toString, STANDALONE | MESOS, CLUSTER, confKey = "spark.driver.supervise"), OptionAssigner(args.ivyRepoPath, STANDALONE, CLUSTER, confKey = "spark.jars.ivy"), // An internal option used only for spark-shell to add user jars to repl's classloader, // previously it uses "spark.jars" or "spark.yarn.dist.jars" which now may be pointed to // remote jars, so adding a new option to only specify local jars for spark-shell internally. OptionAssigner(localJars, ALL_CLUSTER_MGRS, CLIENT, confKey = "spark.repl.local.jars") ) // In client mode, launch the application main class directly // In addition, add the main application jar and any added jars (if any) to the classpath if (deployMode == CLIENT) { childMainClass = args.mainClass if (localPrimaryResource != null && isUserJar(localPrimaryResource)) { childClasspath += localPrimaryResource } if (localJars != null) { childClasspath ++= localJars.split(",") } } // Add the main application jar and any added jars to classpath in case YARN client // requires these jars. // This assumes both primaryResource and user jars are local jars, or already downloaded // to local by configuring "spark.yarn.dist.forceDownloadSchemes", otherwise it will not be // added to the classpath of YARN client. if (isYarnCluster) { if (isUserJar(args.primaryResource)) { childClasspath += args.primaryResource } if (args.jars != null) { childClasspath ++= args.jars.split(",") } } if (deployMode == CLIENT) { if (args.childArgs != null) { childArgs ++= args.childArgs } } // Map all arguments to command-line options or system properties for our chosen mode for (opt <- options) { if (opt.value != null && (deployMode & opt.deployMode) != 0 && (clusterManager & opt.clusterManager) != 0) { if (opt.clOption != null) { childArgs += (opt.clOption, opt.value) } if (opt.confKey != null) { sparkConf.set(opt.confKey, opt.value) } } } // In case of shells, spark.ui.showConsoleProgress can be true by default or by user. if (isShell(args.primaryResource) && !sparkConf.contains(UI_SHOW_CONSOLE_PROGRESS)) { sparkConf.set(UI_SHOW_CONSOLE_PROGRESS, true) } // Add the application jar automatically so the user doesn't have to call sc.addJar // For YARN cluster mode, the jar is already distributed on each node as "app.jar" // For python and R files, the primary resource is already distributed as a regular file if (!isYarnCluster && !args.isPython && !args.isR) { var jars = sparkConf.getOption("spark.jars").map(x => x.split(",").toSeq).getOrElse(Seq.empty) if (isUserJar(args.primaryResource)) { jars = jars ++ Seq(args.primaryResource) } sparkConf.set("spark.jars", jars.mkString(",")) } // In standalone cluster mode, use the REST client to submit the application (Spark 1.3+). // All Spark parameters are expected to be passed to the client through system properties. if (args.isStandaloneCluster) { if (args.useRest) { childMainClass = REST_CLUSTER_SUBMIT_CLASS childArgs += (args.primaryResource, args.mainClass) } else { // In legacy standalone cluster mode, use Client as a wrapper around the user class childMainClass = STANDALONE_CLUSTER_SUBMIT_CLASS if (args.supervise) { childArgs += "--supervise" } Option(args.driverMemory).foreach { m => childArgs += ("--memory", m) } Option(args.driverCores).foreach { c => childArgs += ("--cores", c) } childArgs += "launch" childArgs += (args.master, args.primaryResource, args.mainClass) } if (args.childArgs != null) { childArgs ++= args.childArgs } } // Let YARN know it's a pyspark app, so it distributes needed libraries. if (clusterManager == YARN) { if (args.isPython) { sparkConf.set("spark.yarn.isPython", "true") } } if (clusterManager == MESOS && UserGroupInformation.isSecurityEnabled) { setRMPrincipal(sparkConf) } // In yarn-cluster mode, use yarn.Client as a wrapper around the user class if (isYarnCluster) { childMainClass = YARN_CLUSTER_SUBMIT_CLASS if (args.isPython) { childArgs += ("--primary-py-file", args.primaryResource) childArgs += ("--class", "org.apache.spark.deploy.PythonRunner") } else if (args.isR) { val mainFile = new Path(args.primaryResource).getName childArgs += ("--primary-r-file", mainFile) childArgs += ("--class", "org.apache.spark.deploy.RRunner") } else { if (args.primaryResource != SparkLauncher.NO_RESOURCE) { childArgs += ("--jar", args.primaryResource) } childArgs += ("--class", args.mainClass) } if (args.childArgs != null) { args.childArgs.foreach { arg => childArgs += ("--arg", arg) } } } if (isMesosCluster) { assert(args.useRest, "Mesos cluster mode is only supported through the REST submission API") childMainClass = REST_CLUSTER_SUBMIT_CLASS if (args.isPython) { // Second argument is main class childArgs += (args.primaryResource, "") if (args.pyFiles != null) { sparkConf.set("spark.submit.pyFiles", args.pyFiles) } } else if (args.isR) { // Second argument is main class childArgs += (args.primaryResource, "") } else { childArgs += (args.primaryResource, args.mainClass) } if (args.childArgs != null) { childArgs ++= args.childArgs } } if (isKubernetesCluster) { childMainClass = KUBERNETES_CLUSTER_SUBMIT_CLASS if (args.primaryResource != SparkLauncher.NO_RESOURCE) { if (args.isPython) { childArgs ++= Array("--primary-py-file", args.primaryResource) childArgs ++= Array("--main-class", "org.apache.spark.deploy.PythonRunner") if (args.pyFiles != null) { childArgs ++= Array("--other-py-files", args.pyFiles) } } else if (args.isR) { childArgs ++= Array("--primary-r-file", args.primaryResource) childArgs ++= Array("--main-class", "org.apache.spark.deploy.RRunner") } else { childArgs ++= Array("--primary-java-resource", args.primaryResource) childArgs ++= Array("--main-class", args.mainClass) } } else { childArgs ++= Array("--main-class", args.mainClass) } if (args.childArgs != null) { args.childArgs.foreach { arg => childArgs += ("--arg", arg) } } } // Load any properties specified through --conf and the default properties file for ((k, v) <- args.sparkProperties) { sparkConf.setIfMissing(k, v) } // Ignore invalid spark.driver.host in cluster modes. if (deployMode == CLUSTER) { sparkConf.remove("spark.driver.host") } // Resolve paths in certain spark properties val pathConfigs = Seq( "spark.jars", "spark.files", "spark.yarn.dist.files", "spark.yarn.dist.archives", "spark.yarn.dist.jars") pathConfigs.foreach { config => // Replace old URIs with resolved URIs, if they exist sparkConf.getOption(config).foreach { oldValue => sparkConf.set(config, Utils.resolveURIs(oldValue)) } } // Resolve and format python file paths properly before adding them to the PYTHONPATH. // The resolving part is redundant in the case of --py-files, but necessary if the user // explicitly sets `spark.submit.pyFiles` in his/her default properties file. sparkConf.getOption("spark.submit.pyFiles").foreach { pyFiles => val resolvedPyFiles = Utils.resolveURIs(pyFiles) val formattedPyFiles = if (!isYarnCluster && !isMesosCluster) { PythonRunner.formatPaths(resolvedPyFiles).mkString(",") } else { // Ignoring formatting python path in yarn and mesos cluster mode, these two modes // support dealing with remote python files, they could distribute and add python files // locally. resolvedPyFiles } sparkConf.set("spark.submit.pyFiles", formattedPyFiles) } (childArgs, childClasspath, sparkConf, childMainClass) }
其中:
a. 当部署模式为client,则子进程的主类为用户通过spark-submit提交的类,即代码中的:childMainClass = args.mainClass
b. 当master为Yarn且部署模式为cluster时,子进程的主类为:org.apache.spark.deploy.yarn.YarnClusterApplication
1) 准备Yarn(Cluster Manager)的执行类:
使用spark-submit启动时,实际上执行的是exec "SPARKHOME"/bin/spark−class org.apache.spark.deploy.SparkSubmit "@"
在SparkSubmit中,prepareSubmitEnvironment方法中会为spark提交做准备,准备好运行环境相关。
private[deploy] def prepareSubmitEnvironment(args: SparkSubmitArguments,conf: Option[HadoopConfiguration] = None): (Seq[String], Seq[String], SparkConf, String)
其中该方法内部代码中,发现当cluster manager为yarn时:
a. 当--deploy-mode:cluster时
会调用YarnClusterApplication进行提交。YarnClusterApplication是org.apache.spark.deploy.yarn.Client中的一个内部类,在YarnClusterApplication中new了一个Client对象,并调用了run方法
override def start(args: Array[String], conf: SparkConf): Unit = { // SparkSubmit would use yarn cache to distribute files & jars in yarn mode, // so remove them from sparkConf here for yarn mode. conf.remove("spark.jars") conf.remove("spark.files") new Client(new ClientArguments(args), conf).run() }
b. 当--deploy-mode:client时
调用application-jar.jar自身main函数,执行的是JavaMainApplication
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.deploy import java.lang.reflect.Modifier import org.apache.spark.SparkConf /** * Entry point for a Spark application. Implementations must provide a no-argument constructor. */ private[spark] trait SparkApplication { def start(args: Array[String], conf: SparkConf): Unit } /** * Implementation of SparkApplication that wraps a standard Java class with a "main" method. * * Configuration is propagated to the application via system properties, so running multiple * of these in the same JVM may lead to undefined behavior due to configuration leaks. */ private[deploy] class JavaMainApplication(klass: Class[_]) extends SparkApplication { override def start(args: Array[String], conf: SparkConf): Unit = { val mainMethod = klass.getMethod("main", new Array[String](0).getClass) if (!Modifier.isStatic(mainMethod.getModifiers)) { throw new IllegalStateException("The main method in the given main class must be static") } val sysProps = conf.getAll.toMap sysProps.foreach { case (k, v) => sys.props(k) = v } mainMethod.invoke(null, args) } }
从JavaMainApplication实现可以发现,JavaMainApplication中调用start方法时,只是通过反射执行application-jar.jar的main函数。
(3) 提交到Yarn
1) yarn-cluster运行流程:
当yarn-custer模式中,YarnClusterApplication类中运行的是Client中run方法,Client#run()中实现了任务提交流程:
/** * Submit an application to the ResourceManager. * If set spark.yarn.submit.waitAppCompletion to true, it will stay alive * reporting the application's status until the application has exited for any reason. * Otherwise, the client process will exit after submission. * If the application finishes with a failed, killed, or undefined status, * throw an appropriate SparkException. */ def run(): Unit = { this.appId = submitApplication() if (!launcherBackend.isConnected() && fireAndForget) { val report = getApplicationReport(appId) val state = report.getYarnApplicationState logInfo(s"Application report for $appId (state: $state)") logInfo(formatReportDetails(report)) if (state == YarnApplicationState.FAILED || state == YarnApplicationState.KILLED) { throw new SparkException(s"Application $appId finished with status: $state") } } else { val YarnAppReport(appState, finalState, diags) = monitorApplication(appId) if (appState == YarnApplicationState.FAILED || finalState == FinalApplicationStatus.FAILED) { diags.foreach { err => logError(s"Application diagnostics message: $err") } throw new SparkException(s"Application $appId finished with failed status") } if (appState == YarnApplicationState.KILLED || finalState == FinalApplicationStatus.KILLED) { throw new SparkException(s"Application $appId is killed") } if (finalState == FinalApplicationStatus.UNDEFINED) { throw new SparkException(s"The final status of application $appId is undefined") } } }
在Client类的run()方法中会调用submitApplication()方法,该方法实现:
/** * Submit an application running our ApplicationMaster to the ResourceManager. * * The stable Yarn API provides a convenience method (YarnClient#createApplication) for * creating applications and setting up the application submission context. This was not * available in the alpha API. */ def submitApplication(): ApplicationId = { var appId: ApplicationId = null try { launcherBackend.connect() yarnClient.init(hadoopConf) yarnClient.start() logInfo("Requesting a new application from cluster with %d NodeManagers" .format(yarnClient.getYarnClusterMetrics.getNumNodeManagers)) // Get a new application from our RM val newApp = yarnClient.createApplication() val newAppResponse = newApp.getNewApplicationResponse() appId = newAppResponse.getApplicationId() new CallerContext("CLIENT", sparkConf.get(APP_CALLER_CONTEXT), Option(appId.toString)).setCurrentContext() // Verify whether the cluster has enough resources for our AM verifyClusterResources(newAppResponse) // Set up the appropriate contexts to launch our AM val containerContext = createContainerLaunchContext(newAppResponse) val appContext = createApplicationSubmissionContext(newApp, containerContext) // Finally, submit and monitor the application logInfo(s"Submitting application $appId to ResourceManager") yarnClient.submitApplication(appContext) launcherBackend.setAppId(appId.toString) reportLauncherState(SparkAppHandle.State.SUBMITTED) appId } catch { case e: Throwable => if (appId != null) { cleanupStagingDir(appId) } throw e } }
run()方法则是实现向yarn中的ResourceManager(后文全部简称RM)提交运行任务,并运行我们的ApplicationMaster(后文简称AM)。
稳定的Yarn API提供了一种方便的方法(YarnClient#createApplication),用于创建应用程序和设置应用程序提交上下文。
submitApplication()方法具体操作步骤:
l 初始化并启动YarnClient,后边将使用yarnClient提供的各种API
l 通过调用yarnClient#createApplication()方法,从RM获取一个newApp(application),该newApp用于运行AM。通过newApp#getNewApplicationResponse()返回newApp需要资源情况(newAppResponse)。
l 通过newAppResponse验证集群是否有足够的资源来运行AM。
l 设置适当的上下文来以启动AM。
l 调用yarnClient#submitApplication(appContext)向yarn提交任务启动的请求,并监控application。
yarn-client运行流程:
- 对于部署方式是Client的情况,SparkSubmit的main函数中通过反射执行应用程序的main方法
- 在应用程序的main方法中,创建SparkContext实例
- 在创建SparkContext的实例过程中,通过如下语句创建Scheduler和Backend实例
private var _schedulerBackend: SchedulerBackend = _ private var _taskScheduler: TaskScheduler = _ private[spark] def schedulerBackend: SchedulerBackend = _schedulerBackend private[spark] def taskScheduler: TaskScheduler = _taskScheduler private[spark] def taskScheduler_=(ts: TaskScheduler): Unit = { _taskScheduler = ts } // 构造函数中初始化赋值 // Create and start the scheduler val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode) _schedulerBackend = sched _taskScheduler = ts
https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/SparkContext.scala
SparkContext初始化过程
在Yarn模式下,SparkContext初始化位置因--deploy-mode不同而不同:
yarn-cluster模式下:client会先申请向RM(Yarn Resource Manager)一个Container,来启动AM(ApplicationMaster)进程,而SparkContext运行在AM(ApplicationMaster)进程中;
yarn-client模式下 :在提交节点上执行SparkContext初始化,由client类(JavaMainApplication)调用。
/** * Create a task scheduler based on a given master URL. * Return a 2-tuple of the scheduler backend and the task scheduler. */ private def createTaskScheduler(。。。): (SchedulerBackend, TaskScheduler) = { 。。。 master match { case "local" => 。。。 case LOCAL_N_REGEX(threads) => 。。。 case LOCAL_N_FAILURES_REGEX(threads, maxFailures) => 。。。。 case SPARK_REGEX(sparkUrl) => 。。。。 case LOCAL_CLUSTER_REGEX(numSlaves, coresPerSlave, memoryPerSlave) => 。。。。 case masterUrl => val cm = getClusterManager(masterUrl) match { case Some(clusterMgr) => clusterMgr case None => throw new SparkException("Could not parse Master URL: '" + master + "'") } try { val scheduler = cm.createTaskScheduler(sc, masterUrl) val backend = cm.createSchedulerBackend(sc, masterUrl, scheduler) cm.initialize(scheduler, backend) (backend, scheduler) } catch { case se: SparkException => throw se case NonFatal(e) => throw new SparkException("External scheduler cannot be instantiated", e) } } } private def getClusterManager(url: String): Option[ExternalClusterManager] = { val loader = Utils.getContextOrSparkClassLoader val serviceLoaders = ServiceLoader.load(classOf[ExternalClusterManager], loader).asScala.filter(_.canCreate(url)) if (serviceLoaders.size > 1) { throw new SparkException( s"Multiple external cluster managers registered for the url $url: $serviceLoaders") } serviceLoaders.headOption }
1)SparkContext#createTaskScheduler(。。。)
根据不同的资源管理方式cluster manager来创建不同的TaskScheduler,SchedulerBackend。
1.1)SchedulerBackend与cluster manager资源管理器交互取得应用被分配的资源。
1.2)TaskSheduler在不同的job之间调度,同时接收被分配的资源,之后由他来给每一个Task分配资源。
2)SparkContext#createTaskScheduler(。。。)
最后一个match case是对其他资源管理方式(除了local和standelone{spark://}外的mesos,yarn,kubernetes【外部资源管理器】的资源管理方式)的处理。
SparkContext#createTaskScheduler(。。。)#master match#case masterUrl下边调用了getClusterManager(masterUrl)方法,该方法返回对象是实现了ExternalClusterManager接口的YarnClusterManager类对象。
备注:实现了ExternalClusterManager接口的类还包含:
MesosClusterManager (https://github.com/apache/spark/blob/branch-2.4/resource-managers/mesos/src/main/scala/org/apache/spark/scheduler/cluster/mesos/MesosClusterManager.scala)
KubernetesClusterManager (https://github.com/apache/spark/blob/branch-2.4/resource-managers/kubernetes/core/src/main/scala/org/apache/spark/scheduler/cluster/k8s/KubernetesClusterManager.scala)
ExternalClusterManager接口定义:
private[spark] trait ExternalClusterManager { def canCreate(masterURL: String): Boolean def createTaskScheduler(sc: SparkContext, masterURL: String): TaskScheduler def createSchedulerBackend(sc: SparkContext, masterURL: String, scheduler: TaskScheduler): SchedulerBackend def initialize(scheduler: TaskScheduler, backend: SchedulerBackend): Unit }
ExternalClusterManager接口提供了4个方法:
-canCreate(masterURL: String):Boolean 检查此群集管理器实例是否可以为某个masterURL创建scheduler组件。
-createTaskScheduler(sc: SparkContext, masterURL: String):TaskScheduler 为给定的SparkContext创建TaskScheduler实例
-createSchedulerBackend(sc: SparkContext,masterURL: String,scheduler: TaskScheduler): SchedulerBackend 为给定的SparkContext和调度程序创建SchedulerBackend 。这是在使用“ExternalClusterManager.createTaskScheduler()”创建TaskScheduler后调用的。
-initialize(scheduler: TaskScheduler, backend: SchedulerBackend): Unit 初始化TaskScheduler和SchedulerBackend,在创建调度程序组件之后调用。
YarnClusterManager类定义:
private[spark] class YarnClusterManager extends ExternalClusterManager { override def canCreate(masterURL: String): Boolean = { masterURL == "yarn" } override def createTaskScheduler(sc: SparkContext, masterURL: String): TaskScheduler = { sc.deployMode match { case "cluster" => new YarnClusterScheduler(sc) case "client" => new YarnScheduler(sc) case _ => throw new SparkException(s"Unknown deploy mode '${sc.deployMode}' for Yarn") } } override def createSchedulerBackend(sc: SparkContext, masterURL: String, scheduler: TaskScheduler): SchedulerBackend = { sc.deployMode match { case "cluster" => new YarnClusterSchedulerBackend(scheduler.asInstanceOf[TaskSchedulerImpl], sc) case "client" => new YarnClientSchedulerBackend(scheduler.asInstanceOf[TaskSchedulerImpl], sc) case _ => throw new SparkException(s"Unknown deploy mode '${sc.deployMode}' for Yarn") } } override def initialize(scheduler: TaskScheduler, backend: SchedulerBackend): Unit = { scheduler.asInstanceOf[TaskSchedulerImpl].initialize(backend) } }
YarnClusterManager#createTaskScheduler(...):
在该方法中会根据SparkContext对象的deployMode属性来进行分支判断:
client时,返回YarnScheduler(https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnScheduler.scala)实例对象;
cluster时,返回YarnClusterScheduler(https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClusterScheduler.scala)实例对象。
YarnClusterManager#createSchedulerBackend(...):
在该方法中会根据SparkContext对象的deployMode属性来进行分支判断:
client时,返回YarnClientSchedulerBackend(https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala)实例对象;
cluster时,返回YarnClusterSchedulerBackend(https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClusterSchedulerBackend.scala)实例对象。
Yarn作业运行运行架构原理解析:
1、分析Spark on YARN的Cluster模式,从用户提交作业到作业运行结束整个运行期间的过程分析。
客户端进行操作
- 1、根据yarnConf来初始化yarnClient,并启动yarnClient
- 2、创建客户端Application,并获取Application的ID,进一步判断集群中的资源是否满足executor和ApplicationMaster申请的资源,如果不满足则抛出IllegalArgumentException;
- 3、设置资源、环境变量:其中包括了设置Application的Staging目录、准备本地资源(jar文件、log4j.properties)、设置Application其中的环境变量、创建Container启动的Context等;
- 4、设置Application提交的Context,包括设置应用的名字、队列、AM的申请的Container、标记该作业的类型为Spark;
- 5、申请Memory,并最终通过yarnClient.submitApplication向ResourceManager提交该Application。
当作业提交到YARN上之后,客户端就没事了,甚至在终端关掉那个进程也没事,因为整个作业运行在YARN集群上进行,运行的结果将会保存到HDFS或者日志中。
提交到YARN集群,YARN操作
- 1、运行ApplicationMaster的run方法;
- 2、设置好相关的环境变量。
- 3、创建amClient,并启动;
- 4、在Spark UI启动之前设置Spark UI的AmIpFilter;
- 5、在startUserClass函数专门启动了一个线程(名称为Driver的线程)来启动用户提交的Application,也就是启动了Driver。在Driver中将会初始化SparkContext;
- 6、等待SparkContext初始化完成,最多等待spark.yarn.applicationMaster.waitTries次数(默认为10),如果等待了的次数超过了配置的,程序将会退出;否则用SparkContext初始化yarnAllocator;
怎么知道SparkContext初始化完成?
其实在5步骤中启动Application的过程中会初始化SparkContext,在初始化SparkContext的时候将会创建YarnClusterScheduler,在SparkContext初始化完成的时候,会调用YarnClusterScheduler类中的postStartHook方法,而该方法会通知ApplicationMaster已经初始化好了SparkContext
- 7、当SparkContext、Driver初始化完成的时候,通过amClient向ResourceManager注册ApplicationMaster
- 8、分配并启动Executeors。在启动Executeors之前,先要通过yarnAllocator获取到numExecutors个Container,然后在Container中启动Executeors。如果在启动Executeors的过程中失败的次数达到了maxNumExecutorFailures的次数,maxNumExecutorFailures的计算规则如下:
// Default to numExecutors * 2, with minimum of 3 private val maxNumExecutorFailures =sparkConf.getInt("spark.yarn.max.executor.failures", sparkConf.getInt("spark.yarn.max.worker.failures", math.max(args.numExecutors *2,3)))
那么这个Application将失败,将Application Status标明为FAILED,并将关闭SparkContext。其实,启动Executeors是通过ExecutorRunnable实现的,而ExecutorRunnable内部是启动CoarseGrainedExecutorBackend的。
- 9、最后,Task将在CoarseGrainedExecutorBackend里面运行,然后运行状况会通过Akka通知CoarseGrainedScheduler,直到作业运行完成。
2、Spark on YARN client 模式作业运行全过程分析
我们知道Spark on yarn有两种模式:yarn-cluster和yarn-client。这两种模式作业虽然都是在yarn上面运行,但是其中的运行方式很不一样,今天我就来谈谈Spark on YARN yarn-client模式作业从提交到运行的过程剖析。
和yarn-cluster模式一样,整个程序也是通过spark-submit脚本提交的。但是yarn-client作业程序的运行不需要通过Client类来封装启动,而是直接通过反射机制调用作业的main函数。下面就来分析:
- 1、通过SparkSubmit类的launch的函数直接调用作业的main函数(通过反射机制实现),如果是集群模式就会调用Client的main函数。
- 2、而应用程序的main函数一定都有个SparkContent,并对其进行初始化;
- 3、在SparkContent初始化中将会依次做如下的事情:设置相关的配置、注册MapOutputTracker、BlockManagerMaster、BlockManager,创建taskScheduler和dagScheduler;其中比较重要的是创建taskScheduler和dagScheduler。在创建taskScheduler的时候会根据我们传进来的master来选择Scheduler和SchedulerBackend。由于我们选择的是yarn-client模式,程序会选择YarnClientClusterScheduler和YarnClientSchedulerBackend,并将YarnClientSchedulerBackend的实例初始化YarnClientClusterScheduler,上面两个实例的获取都是通过反射机制实现的,YarnClientSchedulerBackend类是CoarseGrainedSchedulerBackend类的子类,YarnClientClusterScheduler是TaskSchedulerImpl的子类,仅仅重写了TaskSchedulerImpl中的getRackForHost方法。
- 4、初始化完taskScheduler后,将创建dagScheduler,然后通过taskScheduler.start()启动taskScheduler,而在taskScheduler启动的过程中也会调用SchedulerBackend的start方法。在SchedulerBackend启动的过程中将会初始化一些参数,封装在ClientArguments中,并将封装好的ClientArguments传进Client类中,并client.runApp()方法获取Application ID。
- 5、client.runApp里面的做是和前面客户端进行操作那节类似,不同的是在里面启动是ExecutorLauncher(yarn-cluster模式启动的是ApplicationMaster)。
- 6、在ExecutorLauncher里面会初始化并启动amClient,然后向ApplicationMaster注册该Application。注册完之后将会等待driver的启动,当driver启动完之后,会创建一个MonitorActor对象用于和CoarseGrainedSchedulerBackend进行通信(只有事件AddWebUIFilter他们之间才通信,Task的运行状况不是通过它和CoarseGrainedSchedulerBackend通信的)。然后就是设置addAmIpFilter,当作业完成的时候,ExecutorLauncher将通过amClient设置Application的状态为FinalApplicationStatus.SUCCEEDED。
- 7、分配Executors,这里面的分配逻辑和yarn-cluster里面类似,就不再说了。
- 8、最后,Task将在CoarseGrainedExecutorBackend里面运行,然后运行状况会通过Akka通知CoarseGrainedScheduler,直到作业运行完成。
- 9、在作业运行的时候,YarnClientSchedulerBackend会每隔1秒通过client获取到作业的运行状况,并打印出相应的运行信息,当Application的状态是FINISHED、FAILED和KILLED中的一种,那么程序将退出等待。
- 10、最后有个线程会再次确认Application的状态,当Application的状态是FINISHED、FAILED和KILLED中的一种,程序就运行完成,并停止SparkContext。整个过程就结束了。
YARN-Cluster运行架构原理
在YARN-Cluster模式中,当用户向YARN中提交一个应用程序后,YARN将分两个阶段运行该应用程序:
- 1.第一个阶段是把Spark的Driver作为一个ApplicationMaster在YARN集群中先启动;
- 2.第二个阶段是由ApplicationMaster创建应用程序,然后为它向ResourceManager申请资源,并启动Executor来运行Task,同时监控它的整个运行过程,直到运行完成
说明如下:
- Spark Yarn Client向YARN中提交应用程序,包括ApplicationMaster程序、启动ApplicationMaster的命令、需要在Executor中运行的程序等;
- ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,其中ApplicationMaster进行SparkContext等的初始化;
- ApplicationMaster向ResourceManager注册,这样用户可以直接通过ResourceManage查看应用程序的运行状态,然后它将采用轮询的方式通过RPC协议为各个任务申请资源,并监控它们的运行状态直到运行结束;
- 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向ApplicationMaster中的SparkContext注册并申请Task。这一点和Standalone模式一样,只不过SparkContext在Spark Application中初始化时,使用CoarseGrainedSchedulerBackend配合YarnClusterScheduler进行任务的调度,其中YarnClusterScheduler只是对TaskSchedulerImpl的一个简单包装,增加了对Executor的等待逻辑等;
- ApplicationMaster中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向ApplicationMaster汇报运行的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务;
- 应用程序运行完成后,ApplicationMaster向ResourceManager申请注销并关闭自己;
跟踪CoarseGrainedExecutorBackend启动脚本:
YARN-Client运行架构原理
说明如下:
- Spark Yarn Client向YARN的ResourceManager申请启动Application Master。同时在SparkContent初始化中将创建DAGScheduler和TASKScheduler等,由于我们选择的是Yarn-Client模式,程序会选择YarnClientClusterSchedulerYarnScheduler和YarnClientSchedulerBackend;
- ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,与YARN-Cluster区别的是在该ApplicationMaster不运行SparkContext,只与SparkContext进行联系进行资源的分派;
- Client中的SparkContext初始化完毕后,与ApplicationMaster建立通讯,向ResourceManager注册,根据任务信息向ResourceManager申请资源(Container);
- 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向Client中的SparkContext注册并申请Task;
- client中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向Driver汇报运行的状态和进度,以让Client随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务;
- 应用程序运行完成后,Client的SparkContext向ResourceManager申请注销并关闭自己。
Client模式 vs Cluster模式
- 理解YARN-Client和YARN-Cluster深层次的区别之前先清楚一个概念:Application Master。在YARN中,每个Application实例都有一个ApplicationMaster进程,它是Application启动的第一个容器。它负责和ResourceManager打交道并请求资源,获取资源之后告诉NodeManager为其启动Container。从深层次的含义讲YARN-Cluster和YARN-Client模式的区别其实就是ApplicationMaster进程的区别;
- YARN-Cluster模式下,Driver运行在AM(Application Master)中,它负责向YARN申请资源,并监督作业的运行状况。当用户提交了作业之后,就可以关掉Client,作业会继续在YARN上运行,因而YARN-Cluster模式不适合运行交互类型的作业;
- YARN-Client模式下,Application Master仅仅向YARN请求Executor,Client会和请求的Container通信来调度他们工作,也就是说Client不能离开;