神经网络学习之----线性神经网络,delta学习规则,递归下降法(代码实现)

线性神经网络解决异或问题:

import numpy as np
import matplotlib.pyplot as plt


# In[7]:

#输入数据
X = np.array([[1,0,0,0,0,0],
              [1,0,1,0,0,1],
              [1,1,0,1,0,0],
              [1,1,1,1,1,1]])
#标签
Y = np.array([-1,1,1,-1])
#权值初始化,1行3列,取值范围-1到1
W = (np.random.random(6)-0.5)*2
print(W)
#学习率设置
lr = 0.11
#计算迭代次数
n = 0
#神经网络输出
O = 0

def update():
    global X,Y,W,lr,n
    n+=1
    O = np.dot(X,W.T)
    W_C = lr*((Y-O.T).dot(X))/int(X.shape[0])
    W = W + W_C


# In[10]:

for _ in range(100000):
    update()#更新权值
    #-0.1,0.1,0.2,-0.2
    #-1,1,1,-1


#正样本
x1 = [0,1]
y1 = [1,0]
#负样本
x2 = [0,1]
y2 = [0,1]

def calculate(x,root):
    a = W[5]
    b = W[2]+x*W[4]
    c = W[0]+x*W[1]+x*x*W[3]
    if root==1:
        return (-b+np.sqrt(b*b-4*a*c))/(2*a)
    if root==2:
        return (-b-np.sqrt(b*b-4*a*c))/(2*a)
    

xdata = np.linspace(-1,2)

plt.figure()

plt.plot(xdata,calculate(xdata,1),'r')
plt.plot(xdata,calculate(xdata,2),'r')

plt.plot(x1,y1,'bo')
plt.plot(x2,y2,'yo')
plt.show()

print(W)


# In[15]:

O = np.dot(X,W.T)
print(O)

 

posted @ 2018-05-26 19:06  会飞的鱼摆摆  阅读(234)  评论(0编辑  收藏  举报