sklearn文本特征提取——TfidfVectorizer
什么是TF-IDF
TF-IDF(term frequency-inverse document frequency)词频-逆向文件频率。在处理文本时,如何将文字转化为模型可以处理的向量呢?TF-IDF就是这个问题的解决方案之一。字词的重要性与其在文本中出现的频率成正比(TF),与其在语料库中出现的频率成反比(IDF)。
TF
TF:词频。TF(w)=(词w在文档中出现的次数)/(文档的总词数)
IDF
IDF:逆向文件频率。有些词可能在文本中频繁出现,但并不重要,也即信息量小,如is,of,that这些单词,这些单词在语料库中出现的频率也非常大,我们就可以利用这点,降低其权重。IDF(w)=log_e(语料库的总文档数)/(语料库中词w出现的文档数)
TF-IDF
将上面的TF-IDF相乘就得到了综合参数:TF-IDF=TF*IDF
如何使用?
在文本处理中,我们经常遇到将一段话变成向量,以组成矩阵来输入到模型中处理。我们这时就可以用到TF-IDF来做。但是我们需要自己找语料库训练TF-IDF吗?看看sklearn.feature_extraction.text.TfidfVectorizer吧~~~
示例:
from sklearn.feature_extraction.text import TfidfVectorizer
cv=TfidfVectorizer(binary=False,decode_error='ignore',stop_words='english')
vec=cv.fit_transform(['hello world','this is a panda.'])#传入句子组成的list
arr=vec.toarray()
arr是一个2*3的矩阵,如下:
array([[ 0.70710678, 0. , 0.70710678],
[ 0. , 1. , 0. ]])
一行代表一个句子样本,这样的矩阵就可以放入模型中训练了。与TfidfVectorizer类似的还有CountVectorizer。与此相关的概念还有词袋,词集
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
· 【杂谈】分布式事务——高大上的无用知识?