Coroutines in Android - One Shot and Multiple Values
Coroutines in Android - One Shot and Multiple Values
在Android中, 我们用到的数据有可能是一次性的, 也有可能是需要多个值的.
本文介绍Android中结合协程(coroutines)的MVVM模式如何处理这两种情况. 重点介绍协程Flow
在Android中的应用.
本文被收录在: https://github.com/mengdd/KotlinTutorials
One-shot vs multiple values
实际应用中要用到的数据可能是一次性获取的(one-shot), 也可能是多个值(multiple values), 或者称为流(stream).
举例, 一个微博应用中:
- 微博信息: 请求的时候获取, 结果返回即完成. -> one-shot.
- 阅读和点赞数: 需要观察持续变化的数据源, 第一次结果返回并不代表完成. -> multiple values, stream.
MVVM构架中的数据类型
一次性操作和观察多个值(流)的数据, 在架构上看起来会有什么不同呢?
- One-shot operation: ViewModel中是
LiveData
, Repository和Data source中是suspend fun
.
class MyViewModel { val result = liveData { emit(repository.fetchData()) } }
多个值的实现有两种选择:
- Multiple values with LiveData: ViewModel, Repository, Data source都返回
LiveData
. 但是LiveData
其实并不是为流式而设计的, 所以用起来会有点奇怪. - Streams with Flow: ViewModel中是
LiveData
, Repository和Data source返回Flow
.
可以看出两种方式的主要不同点就是ViewModel消费的数据形式, 是LiveData
还是Flow
.
后面会从ViewModel, Repository和Data source三个层面来说明.
Flow是什么
既然提到了Flow
, 我们先来简单讲一下它是什么, 这样大家能在same page.
Kotlin中的多个值, 可以存储在集合中, 比如list, 也可以靠计算生成sequence, 但如果值是异步生成的, 需要将方法标记为suspend
来避免阻塞主线程.
flow和sequence类似, 但flow是非阻塞的.
看这个例子:
fun foo(): Flow<Int> = flow { // flow builder for (i in 1..3) { delay(1000) // pretend we are doing something useful here emit(i) // emit next value } } fun main() = runBlocking<Unit> { // Launch a concurrent coroutine to check if the main thread is blocked launch { for (k in 1..3) { println("I'm not blocked $k") delay(1000) } } // Collect the flow foo().collect { value -> println(value) } }
这段代码执行后输出:
I'm not blocked 1 1 I'm not blocked 2 2 I'm not blocked 3 3
- 这里用来构建Flow的
flow
方法是一个builder function, 在builder block里的代码可以被suspend
. emit
方法负责发送值.- cold stream: 只有调用了terminal operation才会被激活. 最常用的是
collect()
.
如果熟悉Reactive Streams, 或用过RxJava就可以感觉到, Flow的设计看起来很类似.
ViewModel层
发送单个值的情况比较简单和典型, 这里不再多说, 主要说发送多个值的情况. 每次又分ViewModel消费的类型是LiveData
还是Flow
两种情况来讨论.
发射N个值
LiveData -> LiveData
val currentWeather: LiveData<String> = dataSource.fetchWeather()
Flow -> LiveData
val currentWeatherFlow: LiveData<String> = liveData { dataSource.fetchWeatherFlow().collect { emit(it) } }
为了减少boilerplate代码, 简化写法:
val currentWeatherFlow: LiveData<String> = dataSource.fetchWeatherFlow().asLiveData()
后面都直接用这种简化的形式了.
发射1+N个值
LiveData -> LiveData
val currentWeather: LiveData<String> = liveData { emit(LOADING_STRING) emitSource(dataSource.fetchWeather()) }
emitSource()
发送的是一个LiveData
.
Flow -> LiveData
用Flow
的时候可以用上面同样的形式:
val currentWeatherFlow: LiveData<String> = liveData { emit(LOADING_STRING) emitSource( dataSource.fetchWeatherFlow().asLiveData() ) }
这样写看起来有点奇怪, 可读性不好, 所以可以利用Flow
的API, 写成这样:
val currentWeatherFlow: LiveData<String> = dataSource.fetchWeatherFlow() .onStart{emit(LOADING_STRING)} .asLiveData()
Suspend transformation
如果想在ViewModel中做一些转换.
LiveData -> LiveData
val currentWeatherLiveData: LiveData<String> = dataSource.fetchWeather().switchMap { liveData { emit(heavyTransformation(it)) } }
这里不太适合用map
来做转换, 因为是在主线程.
Flow -> LiveData
用Flow
来做转换就很方便:
val currentWeatherFlow: LiveData<String> = dataSource.fetchWeatherFlow() .map{ heavyTransformation(it) } .asLiveData()
Repository层
Repository层通常用来组装和转换数据.
LiveData
被设计的初衷并不是做这些转换的.
Flow
则提供了很多有用的操作符, 所以显然是一种更好的选择:
val currentWeatherFlow: Flow<String> = dataSource.fetchWeatherFlow() .map { ... } .filter { ... } .dropWhile { ... } .combine { ... } .flowOn(Dispatchers.IO) .onCompletion { ... }
Data Source层
Data Source层是网络和数据库, 通常会用到一些第三方的库.
如果用了支持协程的库, 如Retrofit和Room, 那么只需要把方法标记为suspend的, 就行了.
- Retrofit supports coroutines from 2.6.0
- Room supports coroutines from 2.1.0
One-shot operations
对于一次性操作比较简单, 数据层的只要suspend
方法返回值就可以了.
suspend fun doOneShot(param: String) : String = retrofitClient.doSomething(param)
如果所用的网络或者数据库不支持协程, 有办法吗? 答案是肯定的.
用suspendCoroutine
来解决.
比如你用的第三方库是基于callback的, 可以用suspendCancellableCoroutine
来改造one-shot operation:
suspend fun doOneShot(param: String): Result<String> = suspendCancellableCoroutine { continuation -> api.addOnCompleteListener { result -> continuation.resume(result) }.addOnFailureListener { error -> continuation.resumeWithException(error) }.fetchSomething(param) }
如果协程被取消了, 那么resume会被忽略.
验证代码如期工作后, 可以做进一步的重构, 把这部分抽象出来.
Data source with Flow
数据层返回Flow
, 可以用flow
builder:
fun fetchWeatherFlow(): Flow<String> = flow { var counter = 0 while(true) { counter++ delay(2000) emit(weatherConditions[counter % weatherConditions.size]) } }
如果你所用的库不支持Flow, 而是用回调, callbackFlow
builder可以用来改造流.
fun flowFrom(api: CallbackBasedApi): Flow<T> = callbackFlow { val callback = object: Callback { override fun onNextValue(value: T) { offer(value) } override fun onApiError(cause: Throwable) { close(cause) } override fun onCompleted() = close() } api.register(callback) awaitClose { api.unregister(callback) } }
可能并不需要LiveData
在上面的例子中, ViewModel仍然保持了自己向UI暴露的数据是LiveData
类型. 那么有没有可能不用LiveData
呢?
lifecycleScope.launchWhenStarted { viewModel.flowToFlow.collect { binding.currentWeather.text = it } }
这样其实和用LiveData
是一样的效果.
参考
视频:
文档:
博客:
- Coroutines On Android (part III): Real work
- Lessons learnt using Coroutines Flow in the Android Dev Summit 2019 app
最后, 欢迎关注微信公众号: 圣骑士Wind
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 一个奇形怪状的面试题:Bean中的CHM要不要加volatile?
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· Obsidian + DeepSeek:免费 AI 助力你的知识管理,让你的笔记飞起来!
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了