分布式事务

  分布式事务是指会涉及到操作多个数据库的事务。其实就是将对同一库事务的概念扩大到了对多个库的事务。

  目的是为了保证分布式系统中的数据一致性。分布式事务处理的关键是必须有一种方法可以知道事务在任何地方所做的所有动作,提交或回滚事务的决定必须产生统一的结果(全部提交或全部回滚)。

 

  当我们的单个数据库的性能产生瓶颈的时候,我们可能会对数据库进行分区,这里所说的分区指的是物理分区,分区之后可能不同的库就处于不同的服务器上了,这个时候单个数据库的ACID已经不能适应这种情况了,而在这种ACID的集群环境下,再想保证集群的ACID几乎是很难达到,或者即使能达到那么效率和性能会大幅下降,最为关键的是再很难扩展新的分区了,这个时候如果再追求集群的ACID会导致我们的系统变得很差,这时我们就需要引入一个新的理论原则来适应这种集群的情况,就是 CAP 原则或者叫CAP定理。

 

 

CAP定理

WEB服务无法同时满足一下3个属性:

  • C:Consistency 一致性: 同一数据的多个副本是否实时相同。
  • A:Availability 可用性 可用性:一定时间内 & 系统返回一个明确的结果 则称为该系统可用。
  • P:Partition tolerance 分区容错性 将同一服务分布在多个系统中,从而保证某一个系统宕机,仍然有其他系统提供相同的服务。

对于一个业务系统来说,可用性和分区容错性是必须要满足的两个条件,并且这两者是相辅相成的。业务系统之所以使用分布式系统,主要原因有两个:

  • 提升整体性能 当业务量猛增,单个服务器已经无法满足我们的业务需求的时候,就需要使用分布式系统,使用多个节点提供相同的功能,从而整体上提升系统的性能,这就是使用分布式系统的第一个原因。

  • 实现分区容错性 单一节点 或 多个节点处于相同的网络环境下,那么会存在一定的风险,万一该机房断电、该地区发生自然灾害,那么业务系统就全面瘫痪了。为了防止这一问题,采用分布式系统,将多个子系统分布在不同的地域、不同的机房中,从而保证系统高可用性。

这说明分区容错性是分布式系统的根本,如果分区容错性不能满足,那使用分布式系统将失去意义。

  此外,可用性对业务系统也尤为重要。在大谈用户体验的今天,如果业务系统时常出现“系统异常”、响应时间过长等情况,这使得用户对系统的好感度大打折扣,在互联网行业竞争激烈的今天,相同领域的竞争者不甚枚举,系统的间歇性不可用会立马导致用户流向竞争对手。因此,我们只能通过牺牲一致性来换取系统的可用性分区容错性。这也就是下面要介绍的BASE理论。

 

BASE理论

CAP理论告诉我们一个悲惨但不得不接受的事实——我们只能在C、A、P中选择两个条件。而对于业务系统而言,我们往往选择牺牲一致性来换取系统的可用性和分区容错性。不过这里要指出的是,所谓的“牺牲一致性”并不是完全放弃数据一致性,而是牺牲强一致性换取弱一致性。下面来介绍下BASE理论。

  • BA:Basic Available 基本可用S:Soft State:柔性状态 同一数据的不同副本的状态,可以不需要实时一致。
    • 整个系统在某些不可抗力的情况下,仍然能够保证“可用性”,即一定时间内仍然能够返回一个明确的结果。只不过“基本可用”和“高可用”的区别是:
      • “一定时间”可以适当延长 当举行大促时,响应时间可以适当延长
      • 给部分用户返回一个降级页面 给部分用户直接返回一个降级页面,从而缓解服务器压力。但要注意,返回降级页面仍然是返回明确结果。
  • E:Eventual Consisstency:最终一致性 同一数据的不同副本的状态,可以不需要实时一致,但一定要保证经过一定时间后仍然是一致的。

 

 

两阶段提交方案/XA方案:

  其中,XA 是一个两阶段提交协议,该协议分为以下两个阶段:

    第一阶段:事务协调器要求每个涉及到事务的数据库预提交(precommit)此操作,并反映是否可以提交.

    第二阶段:事务协调器要求每个数据库提交数据。

  其中,如果有任何一个数据库否决此次提交,那么所有数据库都会被要求回滚它们在此事务中的那部分信息。

 

  举个例子,比如说公司里经常tb(就是团建),然后一般会有个tb主席(就是负责组织团建的那个人)。

 

  第一个阶段,一般tb主席会提前一周问一下团队里的每个人,说,大家伙,下周六我们去烧烤,去吗?这个时候tb主席开始等待每个人的回答,如果所有人都说ok,那么就可以决定一起去这次tb。

  如果这个阶段里,任何一个人回答说,我有事不去了,那么tb主席就会取消这次活动。

  第二个阶段,如果都ok,那下周六大家就一起去烧烤了

 

  所以这个就是所谓的XA事务,两阶段提交,有一个事务管理器的概念,负责协调多个数据库(资源管理器)的事务,事务管理器先问问各个数据库你准备好了吗?如果每个数据库都回复ok,那么就正式提交事务,在各个数据库上执行操作;如果任何一个数据库回答不ok,那么就回滚事务。

  这种分布式事务方案,比较适合单块应用里,跨多个库的分布式事务,而且因为严重依赖于数据库层面来搞定复杂的事务,效率很低,绝对不适合高并发的场景。如果要用,那么基于spring + JTA就可以搞定。

 

  这个方案,很少用,一般来说某个系统内部如果出现跨多个库的这么一个操作,是不合规的。

  现在微服务,一个大的系统分成几百个服务。一般来说,我们的规定和规范,是要求说每个服务只能操作自己对应的一个数据库。

 

  如果你要操作别的服务对应的库,不允许直连别的服务的库,违反微服务架构的规范,你随便交叉胡乱访问,几百个服务的话,全体乱套,这样的一套服务是没法管理的,没法治理的,经常数据被别人改错,自己的库被别人写挂。

 

  如果你要操作别人的服务的库,你必须是通过调用别的服务的接口来实现,绝对不允许你交叉访问别人的数据库!

  

 

 

 

TCC方案:

  TCC的全称是:Try、Confirm、Cancel。

  TCC 其实就是采用的补偿机制,其核心思想是:针对每个操作,都要注册一个与其对应的确认和补偿(撤销)操作。分为了三个阶段:

    Try阶段:这个阶段说的是对各个服务的资源做检测以及对资源进行锁定或者预留

    Confirm阶段:这个阶段说的是在各个服务中执行实际的操作

    Cancel阶段:如果任何一个服务的业务方法执行出错,那么这里就需要进行补偿,就是执行已经执行成功的业务逻辑的回滚操作

 

  举个例子,比如说跨银行转账的时候,要涉及到两个银行的分布式事务,如果用TCC方案来实现,思路是这样的:

    Try阶段:先把两个银行账户中的资金给它冻结住就不让操作了

    Confirm阶段:执行实际的转账操作,A银行账户的资金扣减,B银行账户的资金增加

    Cancel阶段:如果任何一个银行的操作执行失败,那么就需要回滚进行补偿,就是比如A银行账户如果已经扣减了,但是B银行账户资金增加失败了,那么就得把A银行账户资金给加回去

 

  这种方案几乎很少用人使用,我们用的也比较少,但是也有使用的场景。因为这个事务回滚实际上是严重依赖于你自己写代码来回滚和补偿了,会造成补偿代码巨大。

  比较适合的场景:这个就是除非你是真的一致性要求太高,是你系统中核心之核心的场景,比如常见的就是资金类的场景,那你可以用TCC方案了,自己编写大量的业务逻辑,自己判断一个事务中的各个环节是否ok,不ok就执行补偿/回滚代码。

 

  

 

 

 

本地消息表:

  A系统在自己本地一个事务里操作同时,插入一条数据到消息表。消息表和业务数据要在一个事务里提交,也就是说他们要在一个数据库里面

  接着A系统将这个消息发送到MQ中去

  B系统接收到消息之后,在一个事务里,往自己本地消息表里插入一条数据,同时执行其他的业务操作,如果这个消息已经被处理过了,那么此时这个事务会回滚,这样保证不会重复处理消息

  B系统执行成功之后,就会更新自己本地消息表的状态以及A系统消息表的状态

  如果B系统处理失败了,那么就不会更新消息表状态,那么此时A系统会定时扫描自己的消息表,如果有没处理的消息,会再次发送到MQ中去,让B再次处理

  这个方案保证了最终一致性,哪怕B事务失败了,但是A会不断重发消息,直到B那边成功为止

 

  这个方案说实话最大的问题就在于严重依赖于数据库的消息表来管理事务啥的???这个会导致如果是高并发场景咋办呢?咋扩展呢?所以一般确实很少用

  

 

 

 

可靠消息最终一致性方案:

  这个的意思,就是干脆不要用本地的消息表了,直接基于MQ来实现事务。比如阿里的RocketMQ就支持消息事务。

  大概的意思就是:

    A系统先发送一个prepared消息到mq,如果这个prepared消息发送失败那么就直接取消操作别执行了

    如果这个消息发送成功过了,那么接着执行本地事务,如果成功就告诉mq发送确认消息,如果失败就告诉mq回滚消息

    如果发送了确认消息,那么此时B系统会接收到确认消息,然后执行本地的事务

    mq会自动定时轮询所有prepared消息回调你的接口,问你,这个消息是不是本地事务处理失败了,所有没发送确认消息?那是继续重试还是回滚?一般来说这里你就可以查下数据库看之前本地事务是否执行,如果回滚了,那么这里也回滚吧。这个就是避免可能本地事务执行成功了,别确认消息发送失败了。

    这个方案里,要是系统B的事务失败了咋办?重试咯,自动不断重试直到成功,如果实在是不行,要么就是针对重要的资金类业务进行回滚,比如B系统本地回滚后,想办法通知系统A也回滚;或者是发送报警由人工来手工回滚和补偿

 

  这个还是比较合适的,目前国内互联网公司大都是这么用的,要不你就用RocketMQ支持的,要不你就自己基于类似ActiveMQ?RabbitMQ?自己封装一套类似的逻辑出来,总之思路就是这样子的

  

 

 

 

最大努力通知方案:

这个方案的大致意思就是:

  系统A本地事务执行完之后,发送个消息到MQ

  这里会有个专门消费MQ的最大努力通知服务,这个服务会消费MQ然后写入数据库中记录下来,或者是放入个内存队列也可以,接着调用系统B的接口

  要是系统B执行成功就ok了;要是系统B执行失败了,那么最大努力通知服务就定时尝试重新调用系统B,反复N次,最后还是不行就放弃

 

   

 

 

最后:

  严格资金要求绝对不能错的场景,可以用TCC方案;

  如果是一般的分布式事务场景,订单插入之后要调用库存服务更新库存,库存数据没有资金那么的敏感,可以用可靠消息最终一致性方案

 

  使用分布式事务,会使系统变得复杂,性能,吞吐量下降,所以不要大量使用。

  99%的分布式接口调用,不要做分布式事务,直接就是监控(发邮件、发短信)、记录日志(一旦出错,完整的日志)、事后快速的定位、排查和出解决方案、修复数据。

 

参考:中华石杉Java工程师面试突击

 

 

posted @ 2018-10-02 19:51  __Meng  阅读(269)  评论(0编辑  收藏  举报