447. Number of Boomerangs

Given n points in the plane that are all pairwise distinct, a "boomerang" is a tuple of points (i, j, k) such that the distance between iand j equals the distance between i and k (the order of the tuple matters).

Find the number of boomerangs. You may assume that n will be at most 500 and coordinates of points are all in the range [-10000, 10000] (inclusive).

Example:

Input:
[[0,0],[1,0],[2,0]]

Output:
2

Explanation:
The two boomerangs are [[1,0],[0,0],[2,0]] and [[1,0],[2,0],[0,0]]


给3个点,计算1个点到另外两个点都相等有多少种组合

hypot(x,y) 计算 x 与 y 平方和的平方根

C++(386ms):
 1 class Solution {
 2 public:
 3     int numberOfBoomerangs(vector<pair<int, int>>& points) {
 4         int res = 0;
 5         unordered_map<double, int> ctr(points.size());
 6         for (auto p : points) {
 7             for (auto q : points){
 8                 if (p == q)
 9                     continue ;
10                 double t = hypot(p.first - q.first, p.second - q.second) ;
11                 ctr[t]++ ;
12                 res += 2 * (ctr[t]-1);
13             }
14             ctr.clear() ;
15         }
16         return res;
17     }
18 };

 



posted @ 2017-11-29 17:22  __Meng  阅读(175)  评论(0编辑  收藏  举报