[ABC262B] Triangle (Easier)
Problem Statement
You are given a simple undirected graph with $N$ vertices and $M$ edges. The vertices are numbered $1, \dots, N$, and the $i$-th $(1 \leq i \leq M)$ edge connects Vertex $U_i$ and Vertex $V_i$.
Find the number of tuples of integers $a, b, c$ that satisfy all of the following conditions:
- $1 \leq a \lt b \lt c \leq N$
- There is an edge connecting Vertex $a$ and Vertex $b$.
- There is an edge connecting Vertex $b$ and Vertex $c$.
- There is an edge connecting Vertex $c$ and Vertex $a$.
Constraints
- $3 \leq N \leq 100$
- $1 \leq M \leq \frac{N(N - 1)}{2}$
- $1 \leq U_i \lt V_i \leq N \, (1 \leq i \leq M)$
- $(U_i, V_i) \neq (U_j, V_j) \, (i \neq j)$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $M$ $U_1$ $V_1$ $\vdots$ $U_M$ $V_M$
Output
Print the answer.
Sample Input 1
5 6 1 5 4 5 2 3 1 4 3 5 2 5
Sample Output 1
2
$(a, b, c) = (1, 4, 5), (2, 3, 5)$ satisfy the conditions.
Sample Input 2
3 1 1 2
Sample Output 2
0
Sample Input 3
7 10 1 7 5 7 2 5 3 6 4 7 1 5 2 4 1 3 1 6 2 7
#include<cstdio>
const int N=105;
int n,m,u,v,e[N][N],cnt;
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
e[u][v]=e[v][u]=1;
}
for(int i=1;i<n;i++)
for(int j=i+1;j<n;j++)
for(int k=j+1;k<=n;k++)
if(e[i][j]&&e[j][k]&&e[i][k])
++cnt;
printf("%d",cnt);
}