虽然官方解释是这题目里的树看作无向无环图,从答案来看还是在“以1作为根节点”这一前提下进行的,这棵树搭建好以后,从叶节点开始访问,一直推到根节点即可——很像动态规划的“自底向上”。
但这棵树的搭建堪忧:给出的边不知道哪边更接近根节点。所以我给出的方案干脆在两个顶点都将对方加成孩子,等到访问的时候再作处理,根据从1这个根节点开始访问这个特性,额外加一个“isVisited"来做区分。
然后利用栈对树进行非递归访问
/** * For best-coder problem 3 */ #include <iostream> using namespace std; #include <set> #include <stack> struct Node { public: Node() :mIsVisited(false) {} bool mIsVisited; set< int > mChilds; set< int > mColorSet; }; int main() { int nNode, nCounting; while( cin >> nNode >> nCounting ) { Node node[50001]; for( int i=1; i<nNode; i++ ) { int a, b; cin >> a >> b; node[a].mChilds.insert(b); node[b].mChilds.insert(a); } for( int i=0; i<nCounting; i++ ) { int n, color; cin >> n >> color; node[n].mColorSet.insert(color); } stack<int> nodeStack; node[1].mIsVisited = true; nodeStack.push(1); do{ int currentTop = nodeStack.top(); Node& topNode = node[currentTop]; set<int> & topChilds = topNode.mChilds; set<int> & topColors = topNode.mColorSet; for( set<int>::iterator ci = topChilds.begin(); ci != topChilds.end(); ci++ ) { int child = *ci; if( node[child].mIsVisited ) { topChilds.erase(child); continue; } node[child].mIsVisited = true; nodeStack.push(child); break; } // it's a leaf child if( topChilds.empty() ) { nodeStack.pop(); if( nodeStack.empty() ) continue; Node& topNode = node[ nodeStack.top() ]; topNode.mColorSet.insert(topColors.begin(),topColors.end()); topNode.mChilds.erase(currentTop); continue; } }while(!nodeStack.empty()); // output for( int i=1; i<=nNode; i++ ) { cout << node[i].mColorSet.size(); if( i != nNode ) { cout << " "; }else{ cout << endl; } } } }