Hive详解(04) - hive函数的使用
Hive详解(04) - hive函数的使用
系统内置函数
查看系统自带的函数
hive> show functions;
显示自带的函数的用法
hive> desc function upper;
详细显示自带的函数的用法
hive> desc function extended upper;
常用内置函数
空字段赋值
hive (default)> select comm,nvl(comm, -1) from emp;
hive (default)> select comm, nvl(comm,mgr) from emp;
CASE WHEN THEN ELSE END
name | dept_id | sex |
悟空 | A | 男 |
大海 | A | 男 |
宋宋 | B | 男 |
凤姐 | A | 女 |
婷姐 | B | 女 |
婷婷 | B | 女 |
[hadoop@hadoop102 datas]$ vi emp_sex.txt
row format delimited fields terminated by "\t";
load data local inpath '/opt/module/hive/datas/emp_sex.txt' into table emp_sex;
sum(case sex when '男' then 1 else 0 end) male_count,
sum(case sex when '女' then 1 else 0 end) female_count
行转列
CONCAT(string A/col, string B/col…):返回输入字符串连接后的结果,支持任意个输入字符串;
注意: CONCAT_WS must be "string or array<string>
COLLECT_SET(col):函数只接受基本数据类型,它的主要作用是将某字段的值进行去重汇总,产生array类型字段。
[hadoop@hadoop102 datas]$ vim person_info.txt
row format delimited fields terminated by "\t";
load data local inpath "/opt/module/hive/datas/person_info.txt" into table person_info;
SELECT t1.c_b , CONCAT_WS("|",collect_set(t1.name))
SELECT NAME ,CONCAT_WS(',',constellation,blood_type) c_b
列转行
EXPLODE(col):将hive一列中复杂的array或者map结构拆分成多行。
LATERAL VIEW:LATERAL VIEW udtf(expression) tableAlias AS columnAlias,用于和split, explode等UDTF一起使用,它能够将一列数据拆成多行数据,在此基础上可以对拆分后的数据进行聚合。
[hadoop@hadoop102 datas]$ vi movie_info.txt
row format delimited fields terminated by "\t";
load data local inpath "/opt/module/hive/datas/movie_info.txt" into table movie_info;
explode(split(category,",")) movie_info_tmp AS category_name ;
窗口函数(开窗函数)
OVER():指定分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的改变而变化。
LAG(col,n,default_val):往前第n行数据
LEAD(col,n, default_val):往后第n行数据
NTILE(n):把有序窗口的行分发到指定数据的组中,各个组有编号,编号从1开始,对于每一行,NTILE返回此行所属的组的编号。注意:n必须为int类型。
[hadoop@hadoop102 datas]$ vi business.txt
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
load data local inpath "/opt/module/hive/datas/business.txt" into table business;
select name,count(*) over () from business where substring(orderdate,1,7) = '2017-04' group by name;
select name,orderdate,cost,sum(cost) over(partition by month(orderdate)) from business;
sum(cost) over() as sample1,--所有行相加
sum(cost) over(partition by name) as sample2,--按name分组,组内数据相加
sum(cost) over(partition by name order by orderdate) as sample3,--按name分组,组内数据累加
rows必须跟在Order by 子句之后,对排序的结果进行限制,使用固定的行数来限制分区中的数据行数量
select name,orderdate,cost, ntile(5) over(order by orderdate) sorted
Rank
[hadoop@hadoop102 datas]$ vi score.txt
row format delimited fields terminated by "\t";
load data local inpath '/opt/module/hive/datas/score.txt' into table score;
rank() over(partition by subject order by score desc) rp,
dense_rank() over(partition by subject order by score desc) drp,
row_number() over(partition by subject order by score desc) rmp
其他常用函数
常用日期函数
select unix_timestamp("2020-10-28",'yyyy-MM-dd');
select from_unixtime(1603843200);
select to_date('2020-10-28 12:12:12');
select year('2020-10-28 12:12:12');
select month('2020-10-28 12:12:12');
select day('2020-10-28 12:12:12');
select hour('2020-10-28 12:13:14');
select minute('2020-10-28 12:13:14');
select second('2020-10-28 12:13:14');
select weekofyear('2020-10-28 12:12:12');
select dayofmonth('2020-10-28 12:12:12');
select months_between('2020-04-01','2020-10-28');
select add_months('2020-10-28',-3);
select datediff('2020-11-04','2020-10-28');
select date_add('2020-10-28',4);
select date_sub('2020-10-28',-4);
select last_day('2020-02-30');
select date_format('2020-10-28 12:12:12','yyyy/MM/dd HH:mm:ss');
常用取整函数
常用字符串操作函数
regexp_replace:使用正则表达式匹配目标字符串,匹配成功后替换!
SELECT regexp_replace('2020/10/25', '/', '-');
集合操作
select size(friends) from test3;
select map_keys(children) from test3;
select map_values(children) from test3;
array_contains: 判断array中是否包含某个元素
select array_contains(friends,'bingbing') from test3;
select sort_array(friends) from test3;
多维分析
自定义函数
自定义函数简介
Hive 自带了一些函数,比如:max/min等,但是数量有限,自己可以通过自定义UDF来方便的扩展。
当Hive提供的内置函数无法满足你的业务处理需要时,此时就可以考虑使用用户自定义函数(UDF:user-defined function)。
(2)UDAF(User-Defined Aggregation Function)
(3)UDTF(User-Defined Table-Generating Functions)
https://cwiki.apache.org/confluence/display/Hive/HivePlugins
org.apache.hadoop.hive.ql.udf.generic.GenericUDF
org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
create [temporary] function [dbname.]function_name AS class_name;
drop [temporary] function [if exists] [dbname.]function_name;
自定义UDF函数
hive(default)> select my_len("abcd");
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentTypeException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
public class MyStringLength extends GenericUDF {
* @param arguments 输入参数类型的鉴别器对象
* @throws UDFArgumentException
public ObjectInspector initialize(ObjectInspector[] arguments) throws UDFArgumentException {
throw new UDFArgumentLengthException("Input Args Length Error!!!");
if(!arguments[0].getCategory().equals(ObjectInspector.Category.PRIMITIVE)){
throw new UDFArgumentTypeException(0,"Input Args Type Error!!!");
return PrimitiveObjectInspectorFactory.javaIntObjectInspector;
public Object evaluate(DeferredObject[] arguments) throws HiveException {
if(arguments[0].get() == null){
return arguments[0].get().toString().length();
public String getDisplayString(String[] children) {
4)打成jar包上传到服务器/opt/module/hive/datas/myudf.jar
hive (default)> add jar /opt/module/hive/myudf.jar;
hive (default)> create temporary function my_len as "com.zhangjk.hive.MyStringLength";
hive (default)> select my_len("hello");
自定义UDTF函数
自定义一个UDTF实现将一个任意分割符的字符串切割成独立的单词,例如:
hive(default)> select myudtf("hello,world,hadoop,hive", ",");
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
public class MyUDTF extends GenericUDTF {
private ArrayList<String> outList = new ArrayList<>();
public StructObjectInspector initialize(StructObjectInspector argOIs) throws UDFArgumentException {
List<String> fieldNames = new ArrayList<>();
List<ObjectInspector> fieldOIs = new ArrayList<>();
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);
public void process(Object[] args) throws HiveException {
String arg = args[0].toString();
String splitKey = args[1].toString();
String[] fields = arg.split(splitKey);
public void close() throws HiveException {
2)打成jar包上传到服务器/opt/module/hive/data/myudtf.jar
hive (default)> add jar /opt/module/hive/myudtf.jar;
hive (default)> create temporary function myudtf as "com.atguigu.hive.MyUDTF";
hive (default)> select myudtf("hello,word,hadoop,hive", ",");
本文作者:莲藕淹,转载请注明原文链接:https://www.cnblogs.com/meanshift/p/15802954.html
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY