在神经网络中weight decay

weight decay(权值衰减)的最终目的是防止过拟合。在损失函数中,weight decay是放在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度,所以weight decay的作用是调节模型复杂度对损失函数的影响,若weight decay很大,则复杂的模型损失函数的值也就大。

momentum是梯度下降法中一种常用的加速技术。对于一般的SGD,其表达式为x \leftarrow  x-\alpha \ast dx,x沿负梯度方向下降。而带momentum项的SGD则写生如下形式:
v=\beta \ast v -a\ast dx\\
x \leftarrow  x+v
其中\beta 即momentum系数,通俗的理解上面式子就是,如果上一次的momentum(即v)与这一次的负梯度方向是相同的,那这次下降的幅度就会加大,所以这样做能够达到加速收敛的过程。
三、normalization。如果我没有理解错的话,题主的意思应该是batch normalization吧。batch normalization的是指在神经网络中激活函数的前面,将wx+b按照特征进行normalization,这样做的好处有三点:
1、提高梯度在网络中的流动。Normalization能够使特征全部缩放到[0,1],这样在反向传播时候的梯度都是在1左右,避免了梯度消失现象。
2、提升学习速率。归一化后的数据能够快速的达到收敛。
3、减少模型训练对初始化的依赖。

作者:陈永志
链接:https://www.zhihu.com/question/24529483/answer/114711446
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

posted on 2018-03-22 19:28  mdumpling  阅读(633)  评论(0编辑  收藏  举报

导航