随笔 - 833  文章 - 1  评论 - 106  阅读 - 200万

排序算法——堆排序 (转)

排序算法——堆排序

http://www.cnblogs.com/luchen927/archive/2012/03/08/2381446.html

前一阵子一直在写排序的系列文章,最近因为一些事情耽搁了几天,也穿插了几篇其他类别的随笔。今天还是回到排序上面来,善始善终,呵呵。
今天要介绍的也是一种效率很高的排序——堆排序
思想
堆排序,顾名思义,就是基于堆。因此先来介绍一下堆的概念。
堆分为最大堆和最小堆,其实就是完全二叉树。最大堆要求节点的元素都要大于其孩子,最小堆要求节点元素都小于其左右孩子,两者对左右孩子的大小关系不做任何要求,其实很好理解。有了上面的定义,我们可以得知,处于最大堆的根节点的元素一定是这个堆中的最大值。其实我们的堆排序算法就是抓住了堆的这一特点,每次都取堆顶的元素,将其放在序列最后面,然后将剩余的元素重新调整为最大堆,依次类推,最终得到排序的序列。
或者说,堆排序将所有的待排序数据分为两部分,无序区和有序区。无序区也就是前面的最大堆数据,有序区是每次将堆顶元素放到最后排列而成的序列。每一次堆排序过程都是有序区元素个数增加,无序区元素个数减少的过程。当无序区元素个数为1时,堆排序就完成了。
本质上讲,堆排序是一种选择排序,每次都选择堆中最大的元素进行排序。只不过堆排序选择元素的方法更为先进,时间复杂度更低,效率更高。
图例说明一下:(图片来自http://www.cnblogs.com/zabery/archive/2011/07/26/2117103.html)

具体步骤如下:

  1 首先从第一个非叶子节点开始,比较当前节点和其孩子节点,将最大的元素放在当前节点,交换当前节点和最大节点元素。

  2 将当前元素前面所有的元素都进行1的过程,这样就生成了最大堆

  3 将堆顶元素和最后一个元素交换,列表长度减1。由此无序区减1,有序区加1

  4 剩余元素重新调整建堆

  5 继续3和4,直到所有元素都完成排序

代码

复制代码
复制代码
int adjust_heap(vector<int> &v, int length, int i){
int left = 2 * i;
int right = 2 * i + 1;
int largest = i;
int temp;

while(left < length || right < length){
if (left < length && v[largest] < v[left]){
largest = left;
}
if (right < length && v[largest] < v[right]){
largest = right;
}

if (i != largest){
temp = v[largest];
v[largest] = v[i];
v[i] = temp;
i = largest;
left = 2 * i;
right = 2 * i + 1;
}
else{
break;
}
}
}

int build_heap(vector<int> &v, int length){
int i;
int begin = length/2 - 1; //get the last parent node
for (i = begin; i>=0; i--){
adjust_heap(v,length,i);
}
}

int heap_sort(vector<int> &v){
int length = v.size();
int temp;
printline("before sort:",v);
build_heap(v,length);
while(length > 1){
temp = v[length-1];
v[length-1] = v[0];
v[0] = temp;
length--;
adjust_heap(v,length,0);
}
printline("after sort:",v);
}
复制代码
复制代码

分析
堆排序的平均时间复杂度为O(nlogn),接近于最坏的时间复杂度。在最好情况下,时间复杂度为O(1).

posted on   3D入魔  阅读(334)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)
历史上的今天:
2012-10-22 osg学习 osg源码分析-最长的一帧 第五日
2012-10-22 Ossimplanet编译笔记(VS2008)(转载)
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

点击右上角即可分享
微信分享提示