空间算法总结
////////////////////////////////////////////////////////////////////////////////////
// ***.h
#define PI 3.1415926535897932 // This is our famous PI
#define TWOPI 6.28318530717958
#define PIDIV2 1.57079632679489
#define DTOR (PI/180.0f)
#define RTOD (180.0f/PI)
#define SQR(x) (x*x)
#define BEHIND 0
#define INTERSECTS 1
#define FRONT 2
// This is our basic 3D point/vector class
struct CVector3
{
public:
// A default constructor
CVector3() {}
// This is our constructor that allows us to initialize our data upon creating an instance
CVector3(float X, float Y, float Z)
{
x = X; y = Y; z = Z;
}
// Here we overload the + operator so we can add vectors together
CVector3 operator+(CVector3 vVector)
{
// Return the added vectors result.
return CVector3(vVector.x + x, vVector.y + y, vVector.z + z);
}
// Here we overload the - operator so we can subtract vectors
CVector3 operator-(CVector3 vVector)
{
// Return the subtracted vectors result
return CVector3(x - vVector.x, y - vVector.y, z - vVector.z);
}
// Here we overload the * operator so we can multiply by scalars
CVector3 operator*(float num)
{
// Return the scaled vector
return CVector3(x * num, y * num, z * num);
}
// Here we overload the / operator so we can divide by a scalar
CVector3 operator/(float num)
{
// Return the scale vector
return CVector3(x / num, y / num, z / num);
}
// Dot 点积 2007.3.26 ml
// float dot(CVector3 vVector)
// {
// return (x*vVector.x + y*vVector.y + z*vVector.z);
// }
float x, y, z;
};
class lp3DPointArray : public CTypedPtrArray<CPtrArray, CVector3*> {};
#define VERTEX CVector3
//由3DS.cpp文件中提取出来的几个函数
CVector3 Vector(CVector3 vPoint1, CVector3 vPoint2);
CVector3 AddVector(CVector3 vVector1, CVector3 vVector2);
CVector3 DivideVectorByScaler(CVector3 vVector1, float Scaler);
// This returns the absolute value of "num"
float Absolute(float num);
// This returns a perpendicular vector from 2 given vectors by taking the cross product.
// 下面的函数返回两个矢量的叉积
CVector3 Cross(CVector3 vVector1, CVector3 vVector2);
// This returns the dot product between 2 vectors
// 下面的函数返回两个矢量的点积
float Dot(CVector3 vVector1, CVector3 vVector2);
// This returns the magnitude of a normal (or any other vector)
// 计算矢量的模
float Magnitude(CVector3 vNormal);
// This returns a normalize vector (A vector exactly of length 1)
// 标准化一个矢量[0-1]
CVector3 Normalize(CVector3 vNormal);
// This returns the normal of a polygon (The direction the polygon is facing)
// 多边形面的法线
CVector3 Normal(CVector3 vPolygon[]);
// This returns the distance between 2 3D points
// 两点间的距离
float Distance(CVector3 vPoint1, CVector3 vPoint2);
// This returns the point on the line segment vA_vB that is closest to point vPoint
// 计算线段vA_vB上距离点vPoint最近的点
CVector3 ClosestPointOnLine(CVector3 vA, CVector3 vB, CVector3 vPoint);
// This returns the distance the plane is from the origin (0, 0, 0)
// It takes the normal to the plane, along with ANY point that lies on the plane (any corner)
// 点到平面的距离
float PlaneDistance(CVector3 Normal, CVector3 Point);
// This takes a triangle (plane) and line and returns true if they intersected
// 检测光线与三角形(平面)是否相交
bool IntersectedPlane(CVector3 vPoly[], CVector3 vLine[], CVector3 &vNormal, float &originDistance);
// This returns the angle between 2 vectors
// 两个矢量间的夹角
double AngleBetweenVectors(CVector3 Vector1, CVector3 Vector2);
// This returns an intersection point of a polygon and a line (assuming intersects the plane)
// 类似检测光线与三角形(平面)是否相交
CVector3 IntersectionPoint(CVector3 vNormal, CVector3 vLine[], double distance);
// This returns true if the intersection point is inside of the polygon
// 判断一个点是否在一个多边形面内 <如果是凹多边形面,夹角求和==360度计算将存在误差,不提倡使用此函数>
bool InsidePolygon(CVector3 vIntersection, CVector3 Poly[], long verticeCount);
// Use this function to test collision between a line and polygon
// 检测一条线和平面是否相交
bool IntersectedPolygon(CVector3 vPoly[], CVector3 vLine[], int verticeCount);
// This function classifies a sphere according to a plane. (BEHIND, in FRONT, or INTERSECTS)
// 判断一个球相对一个平面的位置关系 : 前面、后面或相交
int ClassifySphere(CVector3 &vCenter,
CVector3 &vNormal, CVector3 &vPoint, float radius, float &distance);
// This takes in the sphere center, radius, polygon vertices and vertex count.
// This function is only called if the intersection point failed. The sphere
// could still possibly be intersecting the polygon, but on it's edges.
// 球面与平面相交(平面切球面的情况)
bool EdgeSphereCollision(CVector3 &vCenter,
CVector3 vPolygon[], int vertexCount, float radius);
// This returns true if the sphere is intersecting with the polygon.
// 检测球体与平面的碰撞
bool SpherePolygonCollision(CVector3 vPolygon[],
CVector3 &vCenter, int vertexCount, float radius);
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
// This returns the offset the sphere needs to move in order to not intersect the plane
// 返回一个球为了不与平面碰撞需要平移的数值
CVector3 GetCollisionOffset(CVector3 &vNormal, float radius, float distance);
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
// 点到直线的距离 [毕达哥拉斯定理]
float PointToLineDistance(VERTEX vtQ/*点*/,VERTEX VtP1/*直线的第一个点*/,VERTEX vtP2/*直线的第二个点*/);
// 计算向量A在向量B上的投影
CVector3 PointAProjPointB(CVector3 A, CVector3 B);
// 计算向量A在向量B上的投影的模
float MagnitudeOfPointAProjPointB(CVector3 A, CVector3 B);
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
***.cpp
//***********************************************************************//
// //
// - "Talk to me like I'm a 3 year old!" Programming Lessons - //
// //
// $Author: DigiBen digiben@gametutorials.com //
// //
// $Program: CameraWorldCollision //
// //
// $Description: Shows how to check if camera and world collide //
// //
// $Date: 1/23/02 //
// //
//***********************************************************************//
#include <float.h> // This is so we can use _isnan() for acos()
#include "Mymath.h"
/////////////////////////////////////// ABSOLUTE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the absolute value of the number passed in
/////
/////////////////////////////////////// ABSOLUTE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
float Absolute(float num)
{
// If num is less than zero, we want to return the absolute value of num.
// This is simple, either we times num by -1 or subtract it from 0.
if(num < 0)
return (0 - num);
// Return the original number because it was already positive
return num;
}
/////////////////////////////////////// CROSS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns a perpendicular vector from 2 given vectors by taking the cross product.
/////
/////////////////////////////////////// CROSS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
CVector3 Cross(CVector3 vVector1, CVector3 vVector2)
{
CVector3 vNormal; // The vector to hold the cross product
// The X value for the vector is: (V1.y * V2.z) - (V1.z * V2.y) // Get the X value
vNormal.x = ((vVector1.y * vVector2.z) - (vVector1.z * vVector2.y));
// The Y value for the vector is: (V1.z * V2.x) - (V1.x * V2.z)
vNormal.y = ((vVector1.z * vVector2.x) - (vVector1.x * vVector2.z));
// The Z value for the vector is: (V1.x * V2.y) - (V1.y * V2.x)
vNormal.z = ((vVector1.x * vVector2.y) - (vVector1.y * vVector2.x));
return vNormal; // Return the cross product (Direction the polygon is facing - Normal)
}
/////////////////////////////////////// MAGNITUDE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the magnitude of a normal (or any other vector)
/////
/////////////////////////////////////// MAGNITUDE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
float Magnitude(CVector3 vNormal)
{
// This will give us the magnitude or "Norm" as some say, of our normal.
// Here is the equation: magnitude = sqrt(V.x^2 + V.y^2 + V.z^2) Where V is the vector
return (float)sqrt( (vNormal.x * vNormal.x) + (vNormal.y * vNormal.y) + (vNormal.z * vNormal.z) );
}
/////////////////////////////////////// NORMALIZE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns a normalize vector (A vector exactly of length 1)
/////
/////////////////////////////////////// NORMALIZE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
CVector3 Normalize(CVector3 vNormal)
{
float magnitude = Magnitude(vNormal); // Get the magnitude of our normal
// Now that we have the magnitude, we can divide our normal by that magnitude.
// That will make our normal a total length of 1. This makes it easier to work with too.
vNormal.x /= magnitude; // Divide the X value of our normal by it's magnitude
vNormal.y /= magnitude; // Divide the Y value of our normal by it's magnitude
vNormal.z /= magnitude; // Divide the Z value of our normal by it's magnitude
// Finally, return our normalized normal.
return vNormal; // Return the new normal of length 1.
}
/////////////////////////////////////// NORMAL \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the normal of a polygon (The direction the polygon is facing)
/////
/////////////////////////////////////// NORMAL \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
CVector3 Normal(CVector3 vPolygon[])
{ // Get 2 vectors from the polygon (2 sides), Remember the order!
CVector3 vVector1 = vPolygon[2] - vPolygon[0];
CVector3 vVector2 = vPolygon[1] - vPolygon[0];
CVector3 vNormal = Cross(vVector1, vVector2); // Take the cross product of our 2 vectors to get a perpendicular vector
// Now we have a normal, but it's at a strange length, so let's make it length 1.
vNormal = Normalize(vNormal); // Use our function we created to normalize the normal (Makes it a length of one)
return vNormal; // Return our normal at our desired length
}
/////////////////////////////////// DISTANCE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the distance between 2 3D points
/////
/////////////////////////////////// DISTANCE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
float Distance(CVector3 vPoint1, CVector3 vPoint2)
{
// This is the classic formula used in beginning algebra to return the
// distance between 2 points. Since it's 3D, we just add the z dimension:
//
// Distance = sqrt( (P2.x - P1.x)^2 + (P2.y - P1.y)^2 + (P2.z - P1.z)^2 )
//
double distance = sqrt( (vPoint2.x - vPoint1.x) * (vPoint2.x - vPoint1.x) +
(vPoint2.y - vPoint1.y) * (vPoint2.y - vPoint1.y) +
(vPoint2.z - vPoint1.z) * (vPoint2.z - vPoint1.z) );
// Return the distance between the 2 points
return (float)distance;
}
////////////////////////////// CLOSEST POINT ON LINE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the point on the line vA_vB that is closest to the point vPoint
/////
////////////////////////////// CLOSEST POINT ON LINE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
CVector3 ClosestPointOnLine(CVector3 vA, CVector3 vB, CVector3 vPoint)
{
// Create the vector from end point vA to our point vPoint.
CVector3 vVector1 = vPoint - vA;
// Create a normalized direction vector from end point vA to end point vB
CVector3 vVector2 = Normalize(vB - vA);
// Use the distance formula to find the distance of the line segment (or magnitude)
float d = Distance(vA, vB);
// Using the dot product, we project the vVector1 onto the vector vVector2.
// This essentially gives us the distance from our projected vector from vA.
float t = Dot(vVector2, vVector1);
// If our projected distance from vA, "t", is less than or equal to 0, it must
// be closest to the end point vA. We want to return this end point.
if (t <= 0)
return vA;
// If our projected distance from vA, "t", is greater than or equal to the magnitude
// or distance of the line segment, it must be closest to the end point vB. So, return vB.
if (t >= d)
return vB;
// Here we create a vector that is of length t and in the direction of vVector2
CVector3 vVector3 = vVector2 * t;
// To find the closest point on the line segment, we just add vVector3 to the original
// end point vA.
CVector3 vClosestPoint = vA + vVector3;
// Return the closest point on the line segment
return vClosestPoint;
}
/////////////////////////////////// PLANE DISTANCE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the distance between a plane and the origin
/////
/////////////////////////////////// PLANE DISTANCE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
float PlaneDistance(CVector3 Normal, CVector3 Point)
{
float distance = 0; // This variable holds the distance from the plane tot he origin
// Use the plane equation to find the distance (Ax + By + Cz + D = 0) We want to find D.
// So, we come up with D = -(Ax + By + Cz)
// Basically, the negated dot product of the normal of the plane and the point. (More about the dot product in another tutorial)
distance = - ((Normal.x * Point.x) + (Normal.y * Point.y) + (Normal.z * Point.z));
return distance; // Return the distance
}
/////////////////////////////////// INTERSECTED PLANE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This checks to see if a line intersects a plane 检测光线与平面是否相交
/////
/////////////////////////////////// INTERSECTED PLANE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool IntersectedPlane(CVector3 vPoly[], CVector3 vLine[], CVector3 &vNormal, float &originDistance)
{
float distance1=0, distance2=0; // The distances from the 2 points of the line from the plane
vNormal = Normal(vPoly); // We need to get the normal of our plane to go any further
// Let's find the distance our plane is from the origin. We can find this value
// from the normal to the plane (polygon) and any point that lies on that plane (Any vertex)
originDistance = PlaneDistance(vNormal, vPoly[0]);
// Get the distance from point1 from the plane using: Ax + By + Cz + D = (The distance from the plane)
distance1 = ((vNormal.x * vLine[0].x) + // Ax +
(vNormal.y * vLine[0].y) + // Bx +
(vNormal.z * vLine[0].z)) + originDistance; // Cz + D
// Get the distance from point2 from the plane using Ax + By + Cz + D = (The distance from the plane)
distance2 = ((vNormal.x * vLine[1].x) + // Ax +
(vNormal.y * vLine[1].y) + // Bx +
(vNormal.z * vLine[1].z)) + originDistance; // Cz + D
// Now that we have 2 distances from the plane, if we times them together we either
// get a positive or negative number. If it's a negative number, that means we collided!
// This is because the 2 points must be on either side of the plane (IE. -1 * 1 = -1).
if(distance1 * distance2 >= 0) // Check to see if both point's distances are both negative or both positive
return false; // Return false if each point has the same sign. -1 and 1 would mean each point is on either side of the plane. -1 -2 or 3 4 wouldn't...
return true; // The line intersected the plane, Return TRUE
}
/////////////////////////////////// DOT \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This computers the dot product of 2 vectors
/////
/////////////////////////////////// DOT \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
float Dot(CVector3 vVector1, CVector3 vVector2)
{
// The dot product is this equation: V1.V2 = (V1.x * V2.x + V1.y * V2.y + V1.z * V2.z)
// In math terms, it looks like this: V1.V2 = ||V1|| ||V2|| cos(theta)
// (V1.x * V2.x + V1.y * V2.y + V1.z * V2.z)
return ( (vVector1.x * vVector2.x) + (vVector1.y * vVector2.y) + (vVector1.z * vVector2.z) );
}
/////////////////////////////////// ANGLE BETWEEN VECTORS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This checks to see if a point is inside the ranges of a polygon
/////
/////////////////////////////////// ANGLE BETWEEN VECTORS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
double AngleBetweenVectors(CVector3 Vector1, CVector3 Vector2)
{
// Get the dot product of the vectors
float dotProduct = Dot(Vector1, Vector2);
// Get the product of both of the vectors magnitudes
float vectorsMagnitude = Magnitude(Vector1) * Magnitude(Vector2) ;
// Get the angle in radians between the 2 vectors
double angle = acos( dotProduct / vectorsMagnitude );
// Here we make sure that the angle is not a -1.#IND0000000 number, which means indefinate
if(_isnan(angle))
return 0;
// Return the angle in radians
return( angle );
}
/////////////////////////////////// INTERSECTION POINT \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the intersection point of the line that intersects the plane
/////
/////////////////////////////////// INTERSECTION POINT \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
CVector3 IntersectionPoint(CVector3 vNormal, CVector3 vLine[], double distance)
{
CVector3 vPoint, vLineDir; // Variables to hold the point and the line's direction
double Numerator = 0.0, Denominator = 0.0, dist = 0.0;
// 1) First we need to get the vector of our line, Then normalize it so it's a length of 1
vLineDir = vLine[1] - vLine[0]; // Get the Vector of the line
vLineDir = Normalize(vLineDir); // Normalize the lines vector
// 2) Use the plane equation (distance = Ax + By + Cz + D) to find the
// distance from one of our points to the plane.
Numerator = - (vNormal.x * vLine[0].x + // Use the plane equation with the normal and the line
vNormal.y * vLine[0].y +
vNormal.z * vLine[0].z + distance);
// 3) If we take the dot product between our line vector and the normal of the polygon,
Denominator = Dot(vNormal, vLineDir); // Get the dot product of the line's vector and the normal of the plane
// Since we are using division, we need to make sure we don't get a divide by zero error
// If we do get a 0, that means that there are INFINATE points because the the line is
// on the plane (the normal is perpendicular to the line - (Normal.Vector = 0)).
// In this case, we should just return any point on the line.
if( Denominator == 0.0) // Check so we don't divide by zero
return vLine[0]; // Return an arbitrary point on the line
dist = Numerator / Denominator; // Divide to get the multiplying (percentage) factor
// Now, like we said above, we times the dist by the vector, then add our arbitrary point.
vPoint.x = (float)(vLine[0].x + (vLineDir.x * dist));
vPoint.y = (float)(vLine[0].y + (vLineDir.y * dist));
vPoint.z = (float)(vLine[0].z + (vLineDir.z * dist));
return vPoint; // Return the intersection point
}
/////////////////////////////////// INSIDE POLYGON \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This checks to see if a point is inside the ranges of a polygon
/////
/////////////////////////////////// INSIDE POLYGON \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool InsidePolygon(CVector3 vIntersection, CVector3 Poly[], long verticeCount)
{
const double MATCH_FACTOR = 0.99; // Used to cover up the error in floating point
double Angle = 0.0; // Initialize the angle
CVector3 vA, vB; // Create temp vectors
for (int i = 0; i < verticeCount; i++) // Go in a circle to each vertex and get the angle between
{
vA = Poly[i] - vIntersection; // Subtract the intersection point from the current vertex
// Subtract the point from the next vertex
vB = Poly[(i + 1) % verticeCount] - vIntersection;
Angle += AngleBetweenVectors(vA, vB); // Find the angle between the 2 vectors and add them all up as we go along
}
if(Angle >= (MATCH_FACTOR * (2.0 * PI)) ) // If the angle is greater than 2 PI, (360 degrees)
return true; // The point is inside of the polygon
return false; // If you get here, it obviously wasn't inside the polygon, so Return FALSE
}
/////////////////////////////////// INTERSECTED POLYGON \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This checks if a line is intersecting a polygon
/////
/////////////////////////////////// INTERSECTED POLYGON \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool IntersectedPolygon(CVector3 vPoly[], CVector3 vLine[], int verticeCount)
{
CVector3 vNormal;
float originDistance = 0;
// First, make sure our line intersects the plane
// Reference // Reference
if(!IntersectedPlane(vPoly, vLine, vNormal, originDistance))
return false;
// Now that we have our normal and distance passed back from IntersectedPlane(),
// we can use it to calculate the intersection point.
CVector3 vIntersection = IntersectionPoint(vNormal, vLine, originDistance);
// Now that we have the intersection point, we need to test if it's inside the polygon.
if(InsidePolygon(vIntersection, vPoly, verticeCount))
return true; // We collided! Return success
return false; // There was no collision, so return false
}
///////////////////////////////// CLASSIFY SPHERE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This tells if a sphere is BEHIND, in FRONT, or INTERSECTS a plane, also it's distance
/////
///////////////////////////////// CLASSIFY SPHERE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
int ClassifySphere(CVector3 &vPos,
CVector3 &vNormal, CVector3 &vPoint, float radius, float &distance)
{
// First we need to find the distance our polygon plane is from the origin.
float d = (float)PlaneDistance(vNormal, vPoint);
// Here we use the famous distance formula to find the distance the center point
// of the sphere is from the polygon's plane.
distance = (vNormal.x * vPos.x + vNormal.y * vPos.y + vNormal.z * vPos.z + d);
// If the absolute value of the distance we just found is less than the radius,
// the sphere intersected the plane.
if(Absolute(distance) < radius)
return INTERSECTS;
// Else, if the distance is greater than or equal to the radius, the sphere is
// completely in FRONT of the plane.
else if(distance >= radius)
return FRONT;
// If the sphere isn't intersecting or in FRONT of the plane, it must be BEHIND
return BEHIND;
}
///////////////////////////////// EDGE SPHERE COLLSIION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns true if the sphere is intersecting any of the edges of the polygon
/////
///////////////////////////////// EDGE SPHERE COLLSIION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool EdgeSphereCollision(CVector3 &vCenter,
CVector3 vPolygon[], int vertexCount, float radius)
{
CVector3 vPoint;
// This function takes in the sphere's center, the polygon's vertices, the vertex count
// and the radius of the sphere. We will return true from this function if the sphere
// is intersecting any of the edges of the polygon.
// Go through all of the vertices in the polygon
for(int i = 0; i < vertexCount; i++)
{
// This returns the closest point on the current edge to the center of the sphere.
vPoint = ClosestPointOnLine(vPolygon[i], vPolygon[(i + 1) % vertexCount], vCenter);
// Now, we want to calculate the distance between the closest point and the center
float distance = Distance(vPoint, vCenter);
// If the distance is less than the radius, there must be a collision so return true
if(distance < radius)
return true;
}
// The was no intersection of the sphere and the edges of the polygon
return false;
}
////////////////////////////// SPHERE POLYGON COLLISION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns true if our sphere collides with the polygon passed in
/////
////////////////////////////// SPHERE POLYGON COLLISION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool SpherePolygonCollision(CVector3 vPolygon[],
CVector3 &vCenter, int vertexCount, float radius)
{
// 1) STEP ONE - Finding the sphere's classification
// Let's use our Normal() function to return us the normal to this polygon
CVector3 vNormal = Normal(vPolygon);
// This will store the distance our sphere is from the plane
float distance = 0.0f;
// This is where we determine if the sphere is in FRONT, BEHIND, or INTERSECTS the plane
int classification = ClassifySphere(vCenter, vNormal, vPolygon[0], radius, distance);
// If the sphere intersects the polygon's plane, then we need to check further
if(classification == INTERSECTS)
{
// 2) STEP TWO - Finding the psuedo intersection point on the plane
// Now we want to project the sphere's center onto the polygon's plane
CVector3 vOffset = vNormal * distance;
// Once we have the offset to the plane, we just subtract it from the center
// of the sphere. "vPosition" now a point that lies on the plane of the polygon.
CVector3 vPosition = vCenter - vOffset;
// 3) STEP THREE - Check if the intersection point is inside the polygons perimeter
// If the intersection point is inside the perimeter of the polygon, it returns true.
// We pass in the intersection point, the list of vertices and vertex count of the poly.
if(InsidePolygon(vPosition, vPolygon, 3))
return true; // We collided!
else
{
// 4) STEP FOUR - Check the sphere intersects any of the polygon's edges
// If we get here, we didn't find an intersection point in the perimeter.
// We now need to check collision against the edges of the polygon.
if(EdgeSphereCollision(vCenter, vPolygon, vertexCount, radius))
{
return true; // We collided!
}
}
}
// If we get here, there is obviously no collision
return false;
}
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
///////////////////////////////// GET COLLISION OFFSET \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the offset to move the center of the sphere off the collided polygon
/////
///////////////////////////////// GET COLLISION OFFSET \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
CVector3 GetCollisionOffset(CVector3 &vNormal, float radius, float distance)
{
CVector3 vOffset = CVector3(0, 0, 0);
// Once we find if a collision has taken place, we need make sure the sphere
// doesn't move into the wall. In our app, the position will actually move into
// the wall, but we check our collision detection before we render the scene, which
// eliminates the bounce back effect it would cause. The question is, how do we
// know which direction to move the sphere back? In our collision detection, we
// account for collisions on both sides of the polygon. Usually, you just need
// to worry about the side with the normal vector and positive distance. If
// you don't want to back face cull and have 2 sided planes, I check for both sides.
//
// Let me explain the math that is going on here. First, we have the normal to
// the plane, the radius of the sphere, as well as the distance the center of the
// sphere is from the plane. In the case of the sphere colliding in the front of
// the polygon, we can just subtract the distance from the radius, then multiply
// that new distance by the normal of the plane. This projects that leftover
// distance along the normal vector. For instance, say we have these values:
//
// vNormal = (1, 0, 0) radius = 5 distance = 3
//
// If we subtract the distance from the radius we get: (5 - 3 = 2)
// The number 2 tells us that our sphere is over the plane by a distance of 2.
// So basically, we need to move the sphere back 2 units. How do we know which
// direction though? This part is easy, we have a normal vector that tells us the
// direction of the plane.
// If we multiply the normal by the left over distance we get: (2, 0, 0)
// This new offset vectors tells us which direction and how much to move back.
// We then subtract this offset from the sphere's position, giving is the new
// position that is lying right on top of the plane. Ba da bing!
// If we are colliding from behind the polygon (not usual), we do the opposite
// signs as seen below:
// If our distance is greater than zero, we are in front of the polygon
if(distance > 0)
{
// Find the distance that our sphere is overlapping the plane, then
// find the direction vector to move our sphere.
float distanceOver = radius - distance;
vOffset = vNormal * distanceOver;
}
else // Else colliding from behind the polygon
{
// Find the distance that our sphere is overlapping the plane, then
// find the direction vector to move our sphere.
float distanceOver = radius + distance;
vOffset = vNormal * -distanceOver;
}
// There is one problem with check for collisions behind the polygon, and that
// is if you are moving really fast and your center goes past the front of the
// polygon, it will then assume you were colliding from behind and not let
// you back in. Most likely you will take out the if / else check, but I
// figured I would show both ways in case someone didn't want to back face cull.
// Return the offset we need to move back to not be intersecting the polygon.
return vOffset;
}
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
float PointToLineDistance(VERTEX vtQ/*点*/,VERTEX VtP1/*直线的第一个点*/,VERTEX vtP2/*直线的第二个点*/)
{
float dis;
VERTEX vttemp = vtQ - VtP1;
VERTEX vtLine = vtP2 - VtP1;
dis = Magnitude(vttemp)*Magnitude(vttemp) - Dot(vttemp,vtLine)/(Magnitude(vtLine)*Magnitude(vtLine));
dis = sqrt(dis);
return dis;
}
CVector3 PointAProjPointB(CVector3 A, CVector3 B)
{
float dot = Dot(A,B);
float res = (Magnitude(B)*Magnitude(B));
float x = dot * B.x / res;
float y = dot * B.y / res;
float z = dot * B.z / res;
return CVector3(x,y,z);
}
float MagnitudeOfPointAProjPointB(CVector3 A, CVector3 B)
{
return Dot(A,B)/Magnitude(B);
}
/////////////////////////////////////////////////////////////////////////////////
//
// * QUICK NOTES *
//
// Nothing really new added to this file since the last collision tutorial. We did
// however tweak the EdgePlaneCollision() function to handle the camera collision
// better around edges.
//
//
// Ben Humphrey (DigiBen)
// Game Programmer
// DigiBen@GameTutorials.com
// Co-Web Host of http://www.gametutorials.com/
//
//
// 下面的这些函数主要用来计算顶点的法向量,顶点的法向量主要用来计算光照
// 下面的宏定义计算一个矢量的长度
#define Mag(Normal) (sqrt(Normal.x*Normal.x + Normal.y*Normal.y + Normal.z*Normal.z))
// 下面的函数求两点决定的矢量
CVector3 Vector(CVector3 vPoint1, CVector3 vPoint2)
{ CVector3 vVector;
vVector.x = vPoint1.x - vPoint2.x;
vVector.y = vPoint1.y - vPoint2.y;
vVector.z = vPoint1.z - vPoint2.z;
return vVector;
}
// 下面的函数两个矢量相加
CVector3 AddVector(CVector3 vVector1, CVector3 vVector2)
{ CVector3 vResult;
vResult.x = vVector2.x + vVector1.x;
vResult.y = vVector2.y + vVector1.y;
vResult.z = vVector2.z + vVector1.z;
return vResult;
}
// 下面的函数处理矢量的缩放
CVector3 DivideVectorByScaler(CVector3 vVector1, float Scaler)
{ CVector3 vResult;
vResult.x = vVector1.x / Scaler;
vResult.y = vVector1.y / Scaler;
vResult.z = vVector1.z / Scaler;
return vResult;
}
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)