Fork me on GitHub

排序算法与查找算法

排序算法

冒泡排序

  • 时间复杂度:O(n²)
  • 空间复杂度:O(1)
  • 健壮性:健壮
  • 难易程度:简单
def bubbleSort(li):
    for i in range(len(li) - 1):
        for j in range(len(li) - i - 1):
            if li[j] > li[j + 1]:
                li[j], li[j + 1] = li[j + 1], li[j]

li = [345, 456, 68.435, 1, 6, 4, 568, ]
bubbleSort(li)
print(li)

选择排序

  • 时间复杂度:O(n²)
  • 空间复杂度:O(1)
  • 健壮性:健壮
  • 难易程度:简单
def selectSort(li):
    for i in range(len(li) - 1):
        min = I  # 选择一个小的来比较
        for j in range(i + 1, len(li)):
           if li[min] > li[j]:
               li[min], li[j] = li[j], li[min]

li = [345, 456, 68.435, 1, 6, 4, 568, ]
selectSort(li)
print(li)

插入排序

  • 时间复杂度:O(n²)
  • 空间复杂度:O(1)
  • 健壮性:健壮
  • 难易程度:较复杂
def insertSort(li):
    for i in range(len(li) - 1):
        temp = li[i]
        j = i - 1
        while j >= 0 and li[j] > temp:
            li[j + 1] = li[j]
            j = j - 1
        li[j + 1] = temp


li = [345, 456, 68.435, 1, 6, 4, 568, ]
insertSort(li)
print(li)

快速排序

  • 时间复杂度:O(nlogn)
  • 空间复杂度:O(nlogn)
  • 健壮性:不稳定
  • 难易程度:复杂
# 二分左右
def partition(list_for_partition, left, right):
# 中轴点
pivot = list_for_partition[left]

while left < right:
while left < right and list_for_partition[right] >= pivot:
right -= 1
list_for_partition[left] = list_for_partition[right]
while left < right and list_for_partition[left] <= pivot:
left += 1
list_for_partition[right] = list_for_partition[left]

list_for_partition[left] = pivot
return left


# 快速排序
def sort_quickly(list_for_partition, left, right):
if left < right:
pivot = partition(list_for_partition, left, right)

sort_quickly(list_for_partition, left, pivot - 1)
sort_quickly(list_for_partition, pivot + 1, right)
return list_for_partition


# 输出结果
def output_sort_result(list_for_partition):
return sort_quickly(list_for_partition, 0, len(list_for_partition) - 1)

堆排序

  • 时间复杂度:O(nlog₂n)
  • 空间复杂度:O(1)
  • 健壮性:不稳定
  • 难易程度: 困难
def heap_sort(array):
    def heap_adjust(parent):
        child = 2 * parent + 1  # left child
        while child < len(heap):
            if child + 1 < len(heap):
                if heap[child + 1] > heap[child]:
                    child += 1  # right child
            if heap[parent] >= heap[child]:
                break
            heap[parent], heap[child] = \
                heap[child], heap[parent]
            parent, child = child, 2 * child + 1

    heap, array = array.copy(), []
    for i in range(len(heap) // 2, -1, -1):
        heap_adjust(i)
    while len(heap) != 0:
        heap[0], heap[-1] = heap[-1], heap[0]
        array.insert(0, heap.pop())
        heap_adjust(0)
    return array

 查找算法

顺序查找

二分查找

posted @ 2018-09-10 13:21  马一特  阅读(597)  评论(2编辑  收藏  举报