[Reinforcement Learning] 马尔可夫决策过程
在介绍马尔可夫决策过程之前,我们先介绍下情节性任务和连续性任务以及马尔可夫性。
情节性任务 vs. 连续任务
- 情节性任务(Episodic Tasks),所有的任务可以被可以分解成一系列情节,可以看作为有限步骤的任务。
- 连续任务(Continuing Tasks),所有的任务不能分解,可以看作为无限步骤任务。
马尔可夫性
引用维基百科对马尔可夫性的定义:
马尔可夫性:当一个随机过程在给定现在状态及所有过去状态情况下,其未来状态的条件概率分布仅依赖于当前状态。
用数学形式表示如下:
A state \(S_t\) is Markov if and only if
\[P[S_{t+1}|S_t] = P[S_{t+1}|S_1, ..., S_t] \]
马尔可夫过程
马尔可夫过程即为具有马尔可夫性的过程,即过程的条件概率仅仅与系统的当前状态相关,而与它的过去历史或未来状态都是独立、不相关的。
马尔可夫奖赏过程
马尔可夫奖赏过程(Markov Reward Process,MRP)是带有奖赏值的马尔可夫过程,其可以用一个四元组表示 \(<S, P, R, \gamma>\)。
- \(S\) 为有限的状态集合;
- \(P\) 为状态转移矩阵,\(P_{ss^{'}} = P[S_{t+1} = s^{'}|S_t = s]\);
- \(R\) 是奖赏函数;
- \(\gamma\) 为折扣因子(discount factor),其中 \(\gamma \in [0, 1]\)
奖赏函数
在 \(t\) 时刻的奖赏值 \(G_t\):
Why Discount
关于Return的计算为什么需要 \(\gamma\) 折扣系数。David Silver 给出了下面几条的解释:
- 数学表达的方便
- 避免陷入无限循环
- 远期利益具有一定的不确定性
- 在金融学上,立即的回报相对于延迟的回报能够获得更多的利益
- 符合人类更看重眼前利益的特点
价值函数
状态 \(s\) 的长期价值函数表示为:
Bellman Equation for MRPs
下图为MRP的 backup tree 示意图:
注:backup tree 中的白色圆圈代表状态,黑色圆点对应动作。
根据上图可以进一步得到:
马尔可夫决策过程
马尔可夫决策过程(Markov Decision Process,MDP)是带有决策的MRP,其可以由一个五元组构成 \(<S, A, P, R, \gamma>\)。
- \(S\) 为有限的状态集合;
- \(A\) 为有限的动作集合;
- \(P\) 为状态转移矩阵,\(P_{ss^{'}}^{a} = P[S_{t+1} = s^{'}|S_t = s,A_t=a]\);
- \(R\) 是奖赏函数;
- \(\gamma\) 为折扣因子(discount factor),其中 \(\gamma \in [0, 1]\)
我们讨论的MDP一般指有限(离散)马尔可夫决策过程。
策略
策略(Policy)是给定状态下的动作概率分布,即:
状态价值函数 & 最优状态价值函数
给定策略 \(\pi\) 下状态 \(s\) 的状态价值函数(State-Value Function)\(v_{\pi}(s)\):
状态 \(s\) 的最优状态价值函数(The Optimal State-Value Function)\(v_{*}(s)\):
动作价值函数 & 最优动作价值函数
给定策略 \(\pi\),状态 \(s\),采取动作 \(a\) 的动作价值函数(Action-Value Function)\(q_{\pi}(s, a)\):
状态 \(s\) 下采取动作 \(a\) 的最优动作价值函数(The Optimal Action-Value Function)\(q_{*}(s, a)\):
最优策略
如果策略 \(\pi\) 优于策略 \(\pi^{'}\):
最优策略 \(v_{*}\) 满足:
- \(v_{*} \ge \pi, \forall{\pi}\)
- \(v_{\pi_{*}}(s) = v_{*}(s)\)
- \(q_{\pi_{*}}(s, a) = q_{*}(s, a)\)
如何找到最优策略?
可以通过最大化 \(q_{*}(s, a)\) 来找到最优策略:
对于MDP而言总存在一个确定的最优策略,而且一旦我们获得了\(q_{*}(s,a)\),我们就能立即找到最优策略。
Bellman Expectation Equation for MDPs
我们先看下状态价值函数 \(v^{\pi}\)。
状态 \(s\) 对应的 backup tree 如下图所示:
根据上图可得:
再来看动作价值函数 \(q_{\pi}(s, a)\)。
状态 \(s\),动作 \(a\) 对应的 backup tree 如下图所示:
因此可得:
进一步细分 backup tree 再来看 \(v^{\pi}\) 与 \(q_{\pi}(s, a)\) 对应的表示形式。
细分状态 \(s\) 对应的 backup tree 如下图所示:
将式子(2)代入式子(1)可以进一步得到 \(v_{\pi}(s)\) 的贝尔曼期望方程:
细分状态 \(s\),动作 \(a\) 对应的 backup tree 如下图所示:
将式子(1)代入式子(2)可以得到 \(q_{\pi}(s,a)\) 的贝尔曼期望方程:
Bellman Optimality Equation for MDPs
同样我们先看 \(v_{*}(s)\):
对应可以写出公式:
再来看\(q_{*}(s, a)\):
对应公式为:
同样的套路获取 \(v_{*}(s)\) 对应的 backup tree 以及贝尔曼最优方程:
贝尔曼最优方程:
\(q_{*}(s, a)\) 对应的 backup tree 以及贝尔曼最优方程:
对应的贝尔曼最优方程:
贝尔曼最优方程特点
- 非线性(non-linear)
- 通常情况下没有解析解(no closed form solution)
贝尔曼最优方程解法
- Value Iteration
- Policy Iteration
- Sarsa
- Q-Learning
MDPs的相关扩展问题
- 无限MDPs/连续MDPs
- 部分可观测的MDPs
- Reward无折扣因子形式的MDPs/平均Reward形式的MDPs
Reference
[1] 维基百科-马尔可夫性
[2] Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, 2018
[3] David Silver's Homepage
作者:Poll的笔记
博客出处:http://www.cnblogs.com/maybe2030/
本文版权归作者和博客园所有,欢迎转载,转载请标明出处。
<如果你觉得本文还不错,对你的学习带来了些许帮助,请帮忙点击右下角的推荐>