林轩田《机器学习基石》 简介
转:https://blog.csdn.net/red_stone1/article/details/80517672
课程介绍
台湾大学林轩田老师曾在coursera上开设了两门机器学习经典课程:《机器学习基石》和《机器学习技法》。《机器学习基石》课程由浅入深、内容全面,基本涵盖了机器学习领域的很多方面。其作为机器学习的入门和进阶资料非常适合。《机器学习技法》课程主要介绍了机器学习领域经典的一些算法,包括支持向量机、决策树、随机森林、神经网络等等。林老师的教学风格也很幽默风趣,总让读者在轻松愉快的氛围中掌握知识。在此,笔者将把这两门课的所有视频、笔记、书籍等详细资料分享给大家。
首先附上这两门课的主页:
Hsuan-Tien Lin 机器学习基石
课程视频在B站上可以直接观看哦~这里附上传送门:
机器学习基石(林轩田)
机器学习技法(林轩田)
课程内容
《机器学习基石》
这门课主要涉及机器学习关键问题的四个方面:
When Can Machine Learn?
Why Can Machine Learn?
How Can Machine Learn?
How Can Machine Learn Better?
其中每个方面包含4节课,总共有16节课。具体所有课程内容如下:
When Can Machine Learn?
The Learning Problem
Learning to Answer Yes/No
Types of Learning
Feasibility of Learning
Why Can Machine Learn?
Training versus Testing
Theory of Generalization
The VC Dimension
Noise and Error
How Can Machine Learn?
Linear Regression
Logistic Regression
Logistic Regression
Nonlinear Transformation
How Can Machine Learn Better?
Hazard of Overfitting
Regularization
Validation
Three Learning Principles
《机器学习技法》
这门课主要涉及机器学习经典算法的三个方面:
Embedding Numerous Features: Kernel Models
Combining Predictive Features: Aggregation Models
Distilling Implicit Features: Extraction Models
总共有16节课。具体所有课程内容如下:
Embedding Numerous Features: Kernel Models
Linear Support Vector Machine
Dual Support Vector Machine
Kernel Support Vector Machine
Soft-Margin Support Vector Machine
Kernel Logistic Regression
Support Vector Regression
Combining Predictive Features: Aggregation Models
Blending and Bagging
Adaptive Boosting
Decision Tree
Random Forest
Gradient Boosted Decision Tree
Distilling Implicit Features: Extraction Models
Neural Network
Deep Learning
Radial Basis Function Network
Matrix Factorization
Finale
课程书籍
林轩田机器学习基石这门课有一个配套教材:《Learning From Data》,林轩田也是编者之一。这本书的主页为:
笔记 github 地址:
https://github.com/RedstoneWill/NTU-HsuanTienLin-MachineLearning