codeforces 964C
题意:给你n,a,b,k,求式子 模1e9+9的值
思路:很容易得出每一个周期的结果xi是一个等比数列,公比q=(b/a)^k,因为取模,所以必然要求逆元,q=b*(a^(mod-2)),特判q=1的情况,注意,因为q是取了模的,所以q=1是模意义下等于1,并不是单纯的a==b
AC代码:
#include "iostream" #include "iomanip" #include "string.h" #include "stack" #include "queue" #include "string" #include "vector" #include "set" #include "map" #include "algorithm" #include "stdio.h" #include "math.h" #pragma comment(linker, "/STACK:102400000,102400000") #define bug(x) cout<<x<<" "<<"UUUUU"<<endl; #define mem(a,x) memset(a,x,sizeof(a)) #define step(x) fixed<< setprecision(x)<< #define mp(x,y) make_pair(x,y) #define pb(x) push_back(x) #define ll long long #define endl ("\n") #define ft first #define sd second #define lrt (rt<<1) #define rrt (rt<<1|1) using namespace std; const ll mod=1e9+9; const ll INF = 1e18+1LL; const int inf = 1e9+1e8; const double PI=acos(-1.0); const int N=2e5+100; ll n, a, b , k; char s[N]; ll PowMod(ll a, ll b) { ll ret = 1; a = a%mod; while(b) { if(b&1) ret = (ret*a)%mod; a = (a*a)%mod; b >>= 1; } return ret; } int main() { scanf("%lld %lld %lld %lld", &n, &a, &b, &k); scanf("%s", s); ll q = PowMod(b*PowMod(a,mod-2), k); ll ans = 0; for(int i=0; i<k; ++i) { int p = 1; if(s[i] == '-') p = -1; ans = (ans+p*PowMod(a,n-i)*PowMod(b,i))%mod; }//cout<<q<<" "<<ans<<endl; if(q == 1) { ans = ans * ((n+1)/k); return 0*printf("%lld\n", ((ans%mod)+mod)%mod); } ans = (((ans*(PowMod(q,(n+1)/k)-1))%mod)*PowMod(q-1, mod-2))%mod; printf("%lld\n", (ans+mod)%mod); return 0; }