codeforces 959E
Mahmoud and Ehab and the xor-MST
题意:给一个n个点的完全图,每条边的边权为2点的编号异或值(编号0~n-1),求最小生成树
思路:打表找规律
AC代码:
#include "iostream" #include "iomanip" #include "string.h" #include "stack" #include "queue" #include "string" #include "vector" #include "set" #include "map" #include "algorithm" #include "stdio.h" #include "math.h" #pragma comment(linker, "/STACK:102400000,102400000") #define bug(x) cout<<x<<" "<<"UUUUU"<<endl; #define mem(a,x) memset(a,x,sizeof(a)) #define step(x) fixed<< setprecision(x)<< #define mp(x,y) make_pair(x,y) #define pb(x) push_back(x) #define ll long long #define endl ("\n") #define ft first #define sd second #define lrt (rt<<1) #define rrt (rt<<1|1) using namespace std; const ll mod=1e9+7; const ll INF = 1e18+1LL; const int inf = 1e9+1e8; const double PI=acos(-1.0); const int N=1e5+100; ll b[10] = {0,1,3,4,8,9,11,12}; ll f(ll x){ if(x < 6) return b[x]; if(x&1) return 2*f(x/2)+x/2+1; else return 2*f(x/2)+x/2; } int main() { ll n; scanf("%lld", &n); printf("%lld", f(n-1)); return 0; }
打表代码:
#include "iostream" #include "iomanip" #include "string.h" #include "stack" #include "queue" #include "string" #include "vector" #include "set" #include "map" #include "algorithm" #include "stdio.h" #include "math.h" #pragma comment(linker, "/STACK:102400000,102400000") #define bug(x) cout<<x<<" "<<"UUUUU"<<endl; #define mem(a,x) memset(a,x,sizeof(a)) #define step(x) fixed<< setprecision(x)<< #define mp(x,y) make_pair(x,y) #define pb(x) push_back(x) #define ll long long #define endl ("\n") #define ft first #define sd second #define lrt (rt<<1) #define rrt (rt<<1|1) using namespace std; const ll mod=1e9+7; const ll INF = 1e18+1LL; const int inf = 1e9+1e8; const double PI=acos(-1.0); const int N=1e5+100; struct Edge { int u, v; int w; bool friend operator< (Edge a, Edge b) { return a.w<b.w; } }; Edge e[1000005]; int n, cnt, fa[1000005]; int finds(int x) { return fa[x]=(fa[x]==x?x:finds(fa[x])); } void unions(int x, int y) { int fx = finds(x), fy = finds(y); fa[fx] = fy; } int kruscal() { sort(e+1, e+1+cnt); int k = 0, ret = 0; for(int t=1; t<=cnt; ++t) { int fu = finds(e[t].u), fv = finds(e[t].v); if(fu != fv) { //cout<<e[t].u<<" uu "<<e[t].v<<endl; unions(fu, fv); ret += e[t].w; } } return ret; } int main() { for(n=1; n<100; ++n) {//if(n!=4) continue; cnt = 0; mem(e, 0); for(int i=0; i<n; ++i) { for(int j=i+1; j<n; ++j) { e[++cnt].u = i; e[cnt].v = j; e[cnt].w = i^j; } } for(int i=0; i<=n; ++i) fa[i] = i; printf("%d %d\n", n, kruscal()); } return 0; }