基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
1.算法运行效果图预览
(完整程序运行后无水印)
2.算法运行软件版本
MATLAB2022A
3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | SEL = 2; load data.mat if SEL == 1 netbp = newff(F1 ',T1' ,64); netbp = train(netbp,F1 ',T1' ); save netmodel.mat netbp else load netmodel.mat end SNR = [-20:5:10]; for i = 1: length (SNR) i for j = 1:50 F2n = awgn(F2,SNR( i ), 'measured' ); T_out = round (sim(netbp,F2n')); sbl2( j ) = 100* length ( find (T_out==T2'))/ length (T2); end sbl( i ) = mean (sbl2); end figure ; plot (SNR,sbl, '-r>' ,... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.9,0.0]); xlabel ( 'SNR' ); ylabel ( 'BP网络识别率' ); grid on axis ([-25,12,0,80]); save r1.mat SNR sbl |
4.算法理论概述
人脸识别是计算机视觉领域中的一个重要研究方向,它在安防、金融、交通等众多领域有着广泛的应用。机器学习算法为人脸识别提供了强大的工具,不同的机器学习算法在人脸识别中的性能表现和原理各有特点。本文将详细介绍广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的原理,并对它们进行比较。
GRNN 是一种径向基神经网络(RBFN)的变体,它具有一个输入层、一个隐含层和一个输出层。输入层的神经元数量等于输入特征的维度,隐含层神经元的数量通常与训练样本的数量相同,输出层神经元的数量根据具体的预测任务确定。
PNN 也是一种基于径向基函数的神经网络,它由输入层、模式层、求和层和输出层组成。输入层用于接收输入数据(人脸特征向量),模式层的神经元数量通常等于训练样本的数量,求和层用于对模式层的输出进行求和操作,输出层根据求和层的结果进行分类决策。
BP 神经网络通常由输入层、一个或多个隐藏层和输出层组成。输入层神经元数量等于输入特征的维度,输出层神经元数量根据输出类别数量确定,隐藏层神经元数量可以根据经验或实验进行设置。
DNN 是一种包含多个隐藏层的神经网络,典型的结构包括输入层、多个隐藏层和输出层。隐藏层可以是全连接层、卷积层(在处理图像数据时常用)、池化层等多种形式的组合。在人脸识别中,卷积神经网络(CNN)是一种常用的 DNN 结构,它通过卷积层提取人脸图像的特征,池化层进行特征压缩,全连接层进行分类决策。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 一文读懂知识蒸馏
· 终于写完轮子一部分:tcp代理 了,记录一下
2024-02-24 基于sigma-delta和MASHIII调制器的频率合成器simulink建模与仿真
2024-02-24 基于Harris角点的多视角图像全景拼接算法matlab仿真