基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真

1.算法运行效果图预览

(完整程序运行后无水印)

 

2.算法运行软件版本

matlab2022a

 

3.部分核心程序

(完整版代码包含操作步骤视频)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
for t=1:Iters
t
    for i=1:Num
        [pa(i)]  = func_obj(xwoa(i,:));
        Fitout   = pa(i);
        %更新
        if Fitout < woa_get 
            woa_get = Fitout;
            woa_idx = xwoa(i,:);
        end
    end
    %调整参数
    c1 = 2-t*((1)/300);
    c2 =-1+t*((-1)/300);
    %位置更新
    for i=1:Num
        r1         = rand();
        r2         = rand();
        K1         = 2*c1*r1-c1; 
        K2         = 2*r2;            
        l          =(c2-1)*rand + 1; 
        rand_flag  = rand();  
  
        for j=1:D
            if rand_flag<0.5  
               if abs(K1)>=1
                  RLidx    = floor(Num*rand()+1);
                  X_rand   = xwoa(RLidx, :);
                  D_X_rand = abs(K2*X_rand(j)-xwoa(i,j));
                  xwoa(i,j)= X_rand(j)-K1*D_X_rand;    
               else
                  D_Leader = abs(K2*woa_idx(j)-xwoa(i,j));
                  xwoa(i,j)= woa_idx(j)-K1*D_Leader;   
               end
            else
                distLeader = abs(woa_idx(j)-xwoa(i,j));
                xwoa(i,j)  = distLeader*exp(2*l).*cos(l.*2*pi)+woa_idx(j);
            end
            %目标函数更新
            if xwoa(i,j)>=tmps(j,2)
               xwoa(i,j)=tmps(j,2);
            end
            if xwoa(i,j)<=tmps(j,1)
               xwoa(i,j)=tmps(j,1);
            end
        end
    end
end
  
...........................................................
  
%训练
[net,INFO] = trainNetwork(Ptrain_reshape, t_train, CNN_GRN_SAM, opt);
Rerr = INFO.TrainingRMSE;
Rlos = INFO.TrainingLoss;
figure
subplot(211)
plot(Rerr)
xlabel('迭代次数')
ylabel('RMSE')
grid on
     
subplot(212)
plot(Rlos)
xlabel('迭代次数')
ylabel('LOSS')
grid on
%数据预测
  
tmps   = predict(net, Ptest_reshape );
T_pred = mapminmax('reverse', tmps', vmax2);
figure
plot(T_test, 'r')
hold on
plot(T_pred, 'b-x')
legend('真实值', '预测值')
grid on
%%试集结果
figure
plotregression(T_test,T_pred,['回归']);
ERR=mean(abs(T_test-T_pred));
ERR
save R2.mat Rerr Rlos T_test T_pred ERR
186

  

4.算法理论概述

       时间序列预测在众多领域中都具有重要的应用价值。传统的时间序列预测方法在处理复杂的非线性时间序列数据时往往表现出一定的局限性。近年来,深度学习技术的发展为时间序列预测提供了新的思路和方法。

 

网络结构

 

CNN-GRU-SAM 网络由卷积层、GRU 层、自注意力机制层和全连接层组成。

 

      卷积层用于提取时间序列数据的局部特征;GRU 层用于处理时间序列数据中的长期依赖关系;自注意力机制层用于捕捉时间序列数据中的全局特征;全连接层将提取到的特征进行整合,输出预测结果。

 

算法流程

 

        WOA即Whale Optimization Algorithm(鲸鱼优化算法),是一种受自然界鲸鱼捕食行为启发的生物启发式优化算法,由Eslam Mohamed于2016年提出,常用于解决各种连续优化问题,包括函数优化、机器学习参数调整、工程设计等领域中的复杂优化任务。

 

1.数据预处理:对时间序列数据进行归一化处理,使其取值范围在([0,1])之间。

 

2.初始化种群:随机生成一组种群,每个个体代表一组网络参数。

 

3.计算适应度值:对于每个个体,将其对应的网络参数代入 CNN-GRU-SAM 网络中,对训练数据进行预测,并计算预测结果与真实值之间的误差,作为该个体的适应度值。

 

4.更新个体信息。

 

5.重复步骤 3 和 4,直到满足停止条件(如达到最大迭代次数或适应度值小于某个阈值)。6.输出最优网络参数:将全局最优位置对应的网络参数作为最优网络参数,代入 CNN-GRU-SAM 网络中,对测试数据进行预测,得到最终的预测结果。

 

posted @   简简单单做算法  阅读(7)  评论(0编辑  收藏  举报
(评论功能已被禁用)
相关博文:
阅读排行:
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 一文读懂知识蒸馏
· 终于写完轮子一部分:tcp代理 了,记录一下
历史上的今天:
2024-02-18 基于稀疏表示的小波变换多光谱图像融合算法matlab仿真
2024-02-18 基于深度学习的性别识别算法matlab仿真
点击右上角即可分享
微信分享提示