基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
1.算法运行效果图预览
(完整程序运行后无水印)
2.算法运行软件版本
matlab2022a
3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)
LR = woa_idx(1); numHiddenUnits1 = floor(woa_idx(2))+1;% 定义隐藏层中LSTM单元的数量 numHiddenUnits2 = floor(woa_idx(3))+1;% 定义隐藏层中LSTM单元的数量 layers = func_model2(Dim,numHiddenUnits1,numHiddenUnits2); %训练 [Net,INFO] =trainNetwork(Nsp_train2, NTsp_train, layers, options); IT =[1:length(INFO.TrainingLoss)]; Accuracy=INFO.TrainingRMSE; figure; plot(IT(1:1:end),Accuracy(1:1:end)); xlabel('epoch'); ylabel('RMSE'); %数据预测 Dpre1 = predict(Net, Nsp_train2); Dpre2 = predict(Net, Nsp_test2); %归一化还原 T_sim1=Dpre1*Vmax2; T_sim2=Dpre2*Vmax2; %网络结构 analyzeNetwork(Net) figure subplot(211); plot(1: Num1, Tat_train,'-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.0,0.0]); hold on plot(1: Num1, T_sim1,'g',... 'LineWidth',2,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.9,0.0]); legend('真实值', '预测值') xlabel('预测样本') ylabel('预测结果') grid on subplot(212); plot(1: Num1, Tat_train-T_sim1','-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.0,0.0]); xlabel('预测样本') ylabel('预测误差') grid on ylim([-50,50]); figure subplot(211); plot(1: Num2, Tat_test,'-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.0,0.0]); hold on plot(1: Num2, T_sim2,'g',... 'LineWidth',2,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.9,0.0]); legend('真实值', '预测值') xlabel('测试样本') ylabel('测试结果') grid on subplot(212); plot(1: Num2, Tat_test-T_sim2','-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.0,0.0]); xlabel('预测样本') ylabel('预测误差') grid on ylim([-50,50]); save R2.mat Num2 Tat_test IT T_sim2 Accuracy 159
4.算法理论概述
时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、lstm在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。鲸鱼优化(WOA)作为一种高效的全局优化算法,被引入用于优化深度学习模型的超参数。
4.1卷积神经网络(CNN)在时间序列中的应用
在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:
CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。
4.2 长短期记忆网络(LSTM)
LSTM是RNN的一种变体,特别擅长处理长序列依赖问题。它通过门控机制控制信息的遗忘、更新和输出,有效缓解了梯度消失/爆炸问题。
4.3 WOA优化算法
WOA即Whale Optimization Algorithm(鲸鱼优化算法),是一种受自然界鲸鱼捕食行为启发的生物启发式优化算法,由Eslam Mohamed于2016年提出,常用于解决各种连续优化问题,包括函数优化、机器学习参数调整、工程设计等领域中的复杂优化任务。鲸鱼优化算法模拟了虎鲸的两种主要觅食策略: Bubble-net attacking 和 Spiral updating 过程。