基于GWO灰狼优化的CNN-GRU的时间序列回归预测matlab仿真
1.算法运行效果图预览
(完整程序运行后无水印)
2.算法运行软件版本
matlab2022a
3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)
a=2*(1-(t/Iters)); for i=1:Num for j=1:dim r1 = rand; r2 = rand; A1 = 2*a*r1-a;% C1 = 2*r2; % D_alpha = abs(C1*Alpx(j)-xpos(i,j));% X1 = Alpx(j)-A1*D_alpha; % r1 = rand; r2 = rand; A2 = 2*a*r1-a; % C2 = 2*r2; % D_beta = abs(C2*btx(j)-xpos(i,j)); % X2 = btx(j)-A2*D_beta; % r1 = rand; r2 = rand; A3 = 2*a*r1-a; % C3 = 2*r2; % D_delta = abs(C3*dltx(j)-xpos(i,j)); % X3 = dltx(j)-A3*D_delta; % xpos(i,j) = (X1+X2+X3)/3;% if xpos(i,j)>=Lmax(j) xpos(i,j)=Lmax(j); end if xpos(i,j)<=Lmin(j) xpos(i,j)=Lmin(j); end end end end %训练 [Net,INFO] = trainNetwork(Nsp_train2, NTsp_train, layers, options); IT =[1:length(INFO.TrainingLoss)]; Accuracy=INFO.TrainingRMSE; figure; plot(IT(1:1:end),Accuracy(1:1:end)); xlabel('epoch'); ylabel('RMSE'); %数据预测 Dpre1 = predict(Net, Nsp_train2); Dpre2 = predict(Net, Nsp_test2); %归一化还原 T_sim1=Dpre1*Vmax2; T_sim2=Dpre2*Vmax2; %网络结构 analyzeNetwork(Net) figure subplot(211); plot(1: Num1, Tat_train,'-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.0,0.0]); hold on plot(1: Num1, T_sim1,'g',... 'LineWidth',2,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.9,0.0]); legend('真实值', '预测值') xlabel('预测样本') ylabel('预测结果') grid on subplot(212); plot(1: Num1, Tat_train-T_sim1','-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.0,0.0]); xlabel('预测样本') ylabel('预测误差') grid on ylim([-50,50]); figure subplot(211); plot(1: Num2, Tat_test,'-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.0,0.0]); hold on plot(1: Num2, T_sim2,'g',... 'LineWidth',2,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.9,0.0]); legend('真实值', '预测值') xlabel('测试样本') ylabel('测试结果') grid on subplot(212); plot(1: Num2, Tat_test-T_sim2','-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.0,0.0]); xlabel('预测样本') ylabel('预测误差') grid on ylim([-50,50]); save R2.mat Num2 Tat_test T_sim2 IT Accuracy 160
4.算法理论概述
时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、GRU在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。灰狼优化(GWO)作为一种高效的全局优化算法,被引入用于优化深度学习模型的超参数。
4.1卷积神经网络(CNN)在时间序列中的应用
在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:
CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。
4.2 GRU网络
GRU(Gated Recurrent Unit)是一种先进的循环神经网络(RNN)变体,专门设计用于处理序列数据,如文本、语音、时间序列等。GRU旨在解决传统RNN在处理长序列时可能出现的梯度消失或梯度爆炸问题,并简化LSTM(Long Short-Term Memory)网络的结构,同时保持其捕获长期依赖关系的能力。
GRU包含一个核心循环单元,该单元在每个时间步t处理输入数据xt并更新隐藏状态ht。其核心创新在于引入了两个门控机制:更新门(Update Gate)和重置门(Reset Gate)。
4.4 GWO优化
灰狼优化(Grey Wolf Optimizer, GWO)是一种受到灰狼社群行为启发的全球优化算法,由Seyedali Mirjalili等于2014年提出。它模仿了灰狼在自然界中的领导层次结构、狩猎策略以及社会共存机制,以解决各种复杂的优化问题。与遗传算法类似,GWO也是基于种群的优化技术,但其独特的搜索策略和更新规则使其在处理某些类型的问题时展现出不同的优势。
在GWO算法中,灰狼被分为四类:α(领头狼)、β(第二领导者)、δ(第三领导者)以及普通狼(Ω)。在每次迭代中,这些角色对应于当前种群中适应度最好的三个解以及其余的解。通过模拟这些狼在捕食过程中的协作与竞争,算法逐步向全局最优解靠近.