基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
1.算法运行效果图预览
2.算法运行软件版本
matlab2022a
3.部分核心程序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | for i =1:Iter i for j =1:Npeop rng( i + j ) if func_obj(x1( j ,:))<pbest1( j ) p1( j ,:) = x1( j ,:); %变量 pbest1( j ) = func_obj(x1( j ,:)); end if pbest1( j )<gbest1 g1 = p1( j ,:); %变量 gbest1 = pbest1( j ); end v1( j ,:) = 0.8*v1( j ,:)+c1* rand *(p1( j ,:)-x1( j ,:))+c2* rand *(g1-x1( j ,:)); x1( j ,:) = x1( j ,:)+v1( j ,:); for k=1:dims if x1( j ,k) >= tmps(2,k) x1( j ,k) = tmps(2,k); end if x1( j ,k) <= tmps(1,k) x1( j ,k) = tmps(1,k); end end for k=1:dims if v1( j ,k) >= tmps(2,k)/2 v1( j ,k) = tmps(2,k)/2; end if v1( j ,k) <= tmps(1,k)/2 v1( j ,k) = tmps(1,k)/2; end end end gb1( i )=gbest1 end figure ; plot (gb1, '-bs' ,... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.0,0.0]); xlabel ( '优化迭代次数' ); ylabel ( '适应度值' ); ..................................................... figure ; plot (IT(1:1: end ),Accuracy(1:1: end )); xlabel ( 'epoch' ); ylabel ( 'RMSE' ); %数据预测 Dpre1 = predict(Net, Nsp_train2); Dpre2 = predict(Net, Nsp_test2); %归一化还原 T_sim1=Dpre1*Vmax2; T_sim2=Dpre2*Vmax2; %网络结构 analyzeNetwork(Net) figure subplot (211); plot (1: Num1, Tat_train, '-bs' ,... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.0,0.0]); hold on plot (1: Num1, T_sim1, 'g' ,... 'LineWidth' ,2,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.9,0.0]); legend ( '真实值' , '预测值' ) xlabel ( '预测样本' ) ylabel ( '预测结果' ) grid on subplot (212); plot (1: Num1, Tat_train-T_sim1 ',' -bs',... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.0,0.0]); xlabel ( '预测样本' ) ylabel ( '预测误差' ) grid on ylim ([-50,50]); figure subplot (211); plot (1: Num2, Tat_test, '-bs' ,... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.0,0.0]); hold on plot (1: Num2, T_sim2, 'g' ,... 'LineWidth' ,2,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.9,0.0]); legend ( '真实值' , '预测值' ) xlabel ( '测试样本' ) ylabel ( '测试结果' ) grid on subplot (212); plot (1: Num2, Tat_test-T_sim2 ',' -bs',... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.0,0.0]); xlabel ( '预测样本' ) ylabel ( '预测误差' ) grid on ylim ([-50,50]); save R2.mat Num2 Tat_test T_sim2 gb1 Accuracy |
4.算法理论概述
基于粒子群优化(Particle Swarm Optimization, PSO)的卷积神经网络-长短期记忆网络(Convolutional Neural Network - Long Short-Term Memory, CNN-LSTM)模型在时间序列回归预测中,结合了深度学习的强大表达能力和优化算法的高效搜索能力,为复杂时间序列数据的预测提供了一种强有力的解决方案。
4.1 卷积神经网络(CNN)
CNN以其在图像识别领域的卓越表现而闻名,但其在时间序列分析中也显示出了强大的潜力。CNN通过局部连接和权值共享减少参数数量,利用卷积层捕获输入数据的空间特征。
4.2 长短期记忆网络(LSTM)
LSTM是RNN的一种变体,特别擅长处理长序列依赖问题。它通过门控机制控制信息的遗忘、更新和输出,有效缓解了梯度消失/爆炸问题。
4.3 CNN-LSTM结合PSO的时间序列预测
在时间序列预测任务中,首先使用CNN对输入序列进行特征提取,然后将提取到的特征作为LSTM的输入,进一步捕捉序列中的时序依赖关系。整个网络的参数(包括CNN的卷积核权重、LSTM的门控参数等)构成了PSO算法的搜索空间。
结合PSO的过程:
初始化一组粒子,每个粒子代表一组CNN-LSTM模型的参数。
对于每个粒子,构建相应的CNN-LSTM模型并训练,评估其在验证集上的预测性能(如均方误差MSE)作为适应度函数。
根据PSO算法更新粒子的位置和速度,不断寻找更优的模型参数配置。
迭代此过程直至满足停止条件(如达到最大迭代次数或找到足够好的解)。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 一文读懂知识蒸馏
· 终于写完轮子一部分:tcp代理 了,记录一下