基于yolov2深度学习网络的人脸检测matlab仿真,图像来自UMass数据集
1.算法运行效果图预览
2.算法运行软件版本
matlab2022a
3.算法理论概述
YOLOv2是由Joseph Redmon等人在2016年提出的实时目标检测算法,其核心理念是在单个神经网络中一次性完成对整幅图像的预测。对于人脸检测任务,YOLOv2通过端到端的学习,能够在整个图像上直接预测出人脸的位置和大小。
3.1 网络架构与特征提取
YOLOv2基于Darknet-19卷积神经网络进行特征提取,该网络包含19层卷积操作,用于从输入图像中提取丰富的特征信息。每个卷积层后可能跟随批量归一化层(Batch Normalization)、Leaky ReLU激活函数等组件以提升网络性能。
3.2 输出表示
YOLOv2将图像划分为S×S 的网格(例如7×77×7)。对于每个网格单元,网络预测多个边界框(BoundingBox, BBox),每个BBox由以下五部分组成:
其中,
x,y 是相对于网格单元左上角的预测框中心的偏移量。
ℎw,h 是预测框的宽度和高度(相对于整幅图像的比例)。
c 是置信度得分,表示预测框内包含人脸的概率以及预测框与真实框的IOU(Intersection over Union)。
此外,对于每一个预测框,还会预测一个额外的变量集合,代表人脸类别的条件概率:
即在给定框内存在目标的情况下,是人脸的概率。
3.3损失函数设计
YOLOv2使用多任务损失函数,包括定位误差、置信度误差和分类误差三部分:
定位误差:采用平方误差来计算预测框位置与实际框位置之间的差距。
3.4预测阶段
在推理阶段,首先根据阈值筛选掉置信度较低的预测框,并对剩余框进行非极大抑制(Non-Maximum Suppression, NMS)处理,去除冗余预测,最终得到图像中的人脸检测结果。
4.部分核心程序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | load yolov2.mat % 加载训练好的目标检测器 img_size= [224,224]; imgPath = 'test/' ; % 图像库路径 imgDir = dir ([imgPath '*.jpg' ]); % 遍历所有jpg格式文件 cnt = 0; for i = 1:8 % 遍历结构体就可以一一处理图片了 i if mod ( i ,1)==0 figure end cnt = cnt+1; subplot (1,1,cnt); img = imread ([imgPath imgDir( i ).name]); %读取每张图片 I = imresize(img,img_size(1:2)); [bboxes,scores] = detect(detector,I, 'Threshold' ,0.15); if ~ isempty (bboxes) % 如果检测到目标 I = insertObjectAnnotation(I, 'rectangle' ,bboxes,scores,LineWidth=2); % 在图像上绘制检测结果 end subplot (1,1,cnt); imshow(I, []); % 显示带有检测结果的图像 pause (0.01); % 等待一小段时间,使图像显示更流畅 if cnt==1 cnt=0; end end |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 一文读懂知识蒸馏
· 终于写完轮子一部分:tcp代理 了,记录一下