基于CNN-GRU-Attention的时间序列回归预测matlab仿真
1.算法运行效果图预览
2.算法运行软件版本
matlab2022a
3.算法理论概述
CNN-GRU-Attention模型结合了卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制(Attention)来进行时间序列数据的回归预测。CNN用于提取时间序列的局部特征,GRU用于捕获时间序列的长期依赖关系,而注意力机制则用于在预测时强调重要的时间步。
3.1 CNN(卷积神经网络)部分
在时间序列回归任务中,CNN用于捕获局部特征和模式:
3.2 GRU(门控循环单元)部分
GRU用于捕捉时间序列的长期依赖关系:
3.3 Attention机制部分
最后,通过反向传播算法调整所有参数以最小化预测误差,并在整个训练集上迭代优化模型。
4.部分核心程序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | %CNN-GRU-ATT layers = func_model(Dim); %设置 %迭代次数 %学习率为0.001 options = trainingOptions( 'adam' , ... 'MaxEpochs' , 1500, ... 'InitialLearnRate' , 1e-4, ... 'LearnRateSchedule' , 'piecewise' , ... 'LearnRateDropFactor' , 0.1, ... 'LearnRateDropPeriod' , 1000, ... 'Shuffle' , 'every-epoch' , ... 'Plots' , 'training-progress' , ... 'Verbose' , false); %训练 Net = trainNetwork(Nsp_train2, NTsp_train, layers, options); figure subplot (211); plot (1: Num1, Tat_train, '-bs' ,... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.0,0.0]); hold on plot (1: Num1, T_sim1, 'g' ,... 'LineWidth' ,2,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.9,0.0]); legend ( '真实值' , '预测值' ) xlabel ( '预测样本' ) ylabel ( '预测结果' ) grid on subplot (212); plot (1: Num1, Tat_train-T_sim1 ',' -bs',... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.0,0.0]); legend ( '真实值' , '预测值' ) xlabel ( '预测样本' ) ylabel ( '预测误差' ) grid on ylim ([-50,50]); figure subplot (211); plot (1: Num2, Tat_test, '-bs' ,... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.0,0.0]); hold on plot (1: Num2, T_sim2, 'g' ,... 'LineWidth' ,2,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.9,0.0]); legend ( '真实值' , '预测值' ) xlabel ( '测试样本' ) ylabel ( '测试结果' ) grid on subplot (212); plot (1: Num2, Tat_test-T_sim2 ',' -bs',... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.0,0.0]); legend ( '真实值' , '预测值' ) xlabel ( '预测样本' ) ylabel ( '预测误差' ) grid on ylim ([-50,50]); |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 一文读懂知识蒸馏
· 终于写完轮子一部分:tcp代理 了,记录一下