基于googlenet深度学习网络的中药材种类识别算法matlab仿真
1.算法运行效果图预览
2.算法运行软件版本
matlab2022A
3.算法理论概述
中药材种类识别是中药学领域的一项重要任务,对于保证中药的质量和疗效具有重要意义。近年来,深度学习技术在图像识别领域取得了显著进展,为中药材种类识别提供了新的解决方案。
3.1深度学习基础
深度学习是一种模拟人脑神经网络结构的机器学习算法,通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。卷积神经网络(Convolutional Neural Network, CNN)是深度学习的代表算法之一,特别适用于处理图像数据。
3.2GoogLeNet网络结构
GoogLeNet是2014年ILSVRC(ImageNet Large Scale Visual Recognition Challenge)竞赛的冠军模型,以其高效的网络结构和优异的性能而著称。GoogLeNet采用了Inception模块,通过并行卷积、池化等操作,实现了多尺度输入的处理,提高了网络的特征提取能力。
3.3 中药材种类识别算法流程
基于GoogLeNet的中药材种类识别算法主要包括以下几个步骤:
数据预处理:对中药材图像进行预处理,包括图像大小归一化、去噪、增强等操作,以便于网络训练。
构建GoogLeNet网络:基于Inception模块构建GoogLeNet网络,设置网络参数。
网络训练:利用预处理后的中药材图像数据集对GoogLeNet网络进行训练,通过反向传播算法优化网络参数,使得网络能够学习到中药材图像的特征。
特征提取:利用训练好的GoogLeNet网络对中药材图像进行特征提取,得到图像的特征向量。
种类识别:基于提取的特征向量,利用分类器(如支持向量机、随机森林等)对中药材种类进行识别。
4.部分核心程序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | clc ; clear ; close all ; warning off; addpath ( genpath ( pwd )); rng( 'default' ) load gnet.mat % 载入预训练的GoogLeNet模型 % 使用训练好的模型进行分类预测 [Predicted_Label, Probability] = classify(net, Resized_Testing_Dataset); % 计算分类准确率 accuracy = mean (Predicted_Label == Testing_Dataset.Labels); % 随机选择16张测试图像进行展示 index = randperm ( numel (Resized_Testing_Dataset.Files), 20); figure for i = 1:20 % 在子图中展示每张图像、预测标签和概率 subplot (5,4, i ) I = readimage(Testing_Dataset, index( i )); % 读取图像 imshow(I) % 显示图像 label = Predicted_Label(index( i )); % 预测标签 title (string(label) + ", " + num2str (100* max (Probability(index( i ), :)), 3) + "%" ); end |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 一文读懂知识蒸馏
· 终于写完轮子一部分:tcp代理 了,记录一下