基于FPGA的图像RGB转HLS实现,包含testbench和MATLAB辅助验证程序
1.算法运行效果图预览
将FPGA结果导入到MATLAB显示效果:
2.算法运行软件版本
Vivado2019.2
matlab2022a
3.算法理论概述
在数字图像处理中,RGB和HLS是两种常见的颜色空间。RGB基于红绿蓝三种基本颜色的叠加来定义其他颜色,而HLS则代表色调、亮度和饱和度,它更接近人类视觉对颜色的感知。将RGB图像转换为HLS图像的目的通常是为了更方便地进行某些类型的图像处理,比如色彩平衡和色彩分离。RGB颜色空间基于笛卡尔坐标系,其中R、G、B分别代表红、绿、蓝三种颜色的强度。HLS颜色空间则是基于圆柱坐标系,其中H代表色调(0-360度),L代表亮度(0-1),S代表饱和度(0-1)。
转换的第一步是将RGB值归一化到[0,1]范围。然后,通过计算RGB颜色空间的最大值和最小值来得到亮度L。色调H由RGB中的最大值和最小值决定,并使用反正切函数来得到0-360度的角度。最后,饱和度S基于最大值和亮度L来计算。
具体的转换公式如下:
将RGB值归一化到[0,1]:
R' = R/255
G' = G/255
B' = B/255
3.1计算最大值和最小值
Max = max(R', G', B')
Min = min(R', G', B')
Diff = Max - Min
3.2计算亮度L
L = (Max + Min) / 2
3.3计算饱和度S
if L < 0.5:
S = Diff / (Max + Min)
else:
S = Diff / (2 - Max - Min)
3.4计算色调H
if Diff == 0:
H = 0
else:
if Max == R':
H = (60 * ((G' - B') / Diff) + 360) % 360
elif Max == G':
H = (60 * ((B' - R') / Diff) + 120) % 360
elif Max == B':
H = (60 * ((R' - G') / Diff) + 240) % 360
这些公式可以将每一个像素从RGB颜色空间转换到HLS颜色空间。值得注意的是,这种转换通常是可逆的,也就是说,你也可以从HLS颜色空间转换回RGB颜色空间。在实现RGB到HLS的转换时,通常会先读取一幅RGB图像,然后将上述公式应用于图像中的每一个像素。
4.部分核心程序
`timescale 1ns / 1ps // // Company: // Engineer: // // Create Date: 2023/08/01 // Design Name: // Module Name: RGB2gray // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // // module test_image; reg i_clk; reg i_rst; reg [7:0] Rbuff [0:100000]; reg [7:0] Gbuff [0:100000]; reg [7:0] Bbuff [0:100000]; reg [7:0] i_Ir,i_Ig,i_Ib; wire [7:0] o_H; wire [7:0] o_L,o_S; integer fids1,dat1,fids2,dat2,fids3,dat3,jj=0; //D:\FPGA_Proj\FPGAtest\codepz initial begin fids1 = $fopen("D:\\FPGA_Proj\\FPGAtest\\codepz\\R.bmp","rb"); dat1 = $fread(Rbuff,fids1); $fclose(fids1); end initial begin fids2 = $fopen("D:\\FPGA_Proj\\FPGAtest\\codepz\\G.bmp","rb"); dat2 = $fread(Gbuff,fids2); $fclose(fids2); end initial begin fids3 = $fopen("D:\\FPGA_Proj\\FPGAtest\\codepz\\B.bmp","rb"); dat3 = $fread(Bbuff,fids3); $fclose(fids3); end initial begin i_clk=1; i_rst=1; #1200; i_rst=0; end always #5 i_clk=~i_clk; always@(posedge i_clk) begin i_Ir<=Rbuff[jj]; i_Ig<=Gbuff[jj]; i_Ib<=Bbuff[jj]; jj<=jj+1; end main_RGB2HLS main_RGB2HLS_u( .i_clk (i_clk), .i_rst (i_rst), .i_image_R (i_Ir), .i_image_G (i_Ig), .i_image_B (i_Ib), .o_H (o_H),// Y .o_L (o_L),// Y .o_S (o_S) ); integer fout1; initial begin fout1 = $fopen("H.txt","w"); end always @ (posedge i_clk) begin if(jj<=66616) $fwrite(fout1,"%d\n",o_H); else $fwrite(fout1,"%d\n",0); end integer fout2; initial begin fout2 = $fopen("L.txt","w"); end always @ (posedge i_clk) begin if(jj<=66616) $fwrite(fout2,"%d\n",o_L); else $fwrite(fout2,"%d\n",0); end integer fout3; initial begin fout3 = $fopen("S.txt","w"); end always @ (posedge i_clk) begin if(jj<=66616) $fwrite(fout3,"%d\n",o_S); else $fwrite(fout3,"%d\n",0); end endmodule