基于FPGA的图像自适应阈值二值化算法实现,包括tb测试文件和MATLAB辅助验证
1.算法运行效果图预览
2.算法运行软件版本
Vivado2019.2
matlab2022a
3.算法理论概述
图像二值化是数字图像处理中的一种常见技术,可以将灰度图像转换为黑白二值图像,突出图像的轮廓和特征。自适应阈值二值化是一种常用的图像二值化方法,能够根据图像局部区域的灰度分布自适应地确定阈值,从而实现更好的二值化效果。
自适应阈值二值化算法的基本原理是将图像分为若干个小的子区域,每个子区域内的像素点使用一个共同的阈值进行二值化处理。这个阈值是根据子区域内像素点的灰度分布自适应计算得到的。常用的自适应阈值二值化方法包括Otsu方法和Adaptive Thresholding方法。
3.1Otsu方法
Otsu方法是一种基于灰度直方图的阈值选择方法,通过优化类间方差来自动确定阈值。设图像的灰度级范围为0~255,灰度直方图表示每个灰度级的像素点数量。Otsu方法的目标是最优地选择一个阈值T,将图像分为前景和背景两部分,使得这两部分的类间方差最大。类间方差公式如下:
σb = w0 * w1 * (μ0 - μ1)²
其中,w0和w1分别是前景和背景的像素点数量所占比例,μ0和μ1分别是前景和背景的灰度平均值。Otsu方法通过求解类间方差的最大值来自动确定最优阈值T。
3.2 Adaptive Thresholding方法
Adaptive Thresholding方法是一种基于局部灰度分布的阈值确定方法。该方法将图像分成若干个小的子区域,每个子区域使用一个共同的阈值进行二值化处理。阈值是根据子区域内像素点的灰度分布计算得到的。具体来说,对于每个子区域,计算其灰度平均值和标准差,将灰度平均值减去一个常数(一般为1/2),得到该子区域的阈值。如果子区域内某个像素点的灰度值大于阈值,则将其置为255(白色),否则置为0(黑色)。
3.3、FPGA实现过程
我们这个课题主要通过4.2的方法来实现基于FPGA的图像自适应阈值二值化算法,其实现过程如下:
划分子区域:将图像划分为若干个小的子区域,每个子区域的大小可以自定义。可以使用一个二维数组来表示子区域,数组的每个元素表示一个像素点的位置和灰度值。
计算阈值:对于每个子区域,计算其灰度平均值,并根据公式计算出该子区域的阈值。可以使用Verilog中的相关模块来实现计算过程。
二值化处理:对于每个像素点,如果其灰度值大于阈值,则将其置为255(白色),否则置为0(黑色)。可以使用一个简单的if-else语句来实现这个过程。
输出二值化图像:将处理后的二值化图像数据输出到FPGA的I/O口,以供后续显示或传输使用。
时钟信号:在整个实现过程中,需要使用一个时钟信号来同步数据传输和处理过程。可以使用FPGA的时钟源来生成相应的时钟信号。
通过将FPGA的高速并行处理能力与自适应阈值二值化算法相结合,可以实现高性能、高效率的图像处理系统。这种实现方法可以广泛应用于数字图像处理、计算机视觉、安防监控等领域。
4.部分核心程序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | `timescale 1ns / 1ps // // Company: // Engineer: // // Create Date: 2022/07/28 01:51:45 // Design Name: // Module Name: test_image // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // // module test_image; reg i_clk; reg i_rst; reg [7:0] image_buff [0:100000]; reg [7:0] II0; wire [7:0] o_Ifilter; wire [7:0] o_Ifilter2; integer fids,jj=0,dat; //D:\FPGA_Proj\FPGAtest\codepz initial begin fids = $ fopen ( "D:\\FPGA_Proj\\FPGAtest\\codepz\\data.bmp" , "rb" ); dat = $ fread (image_buff,fids); $ fclose (fids); end initial begin i_clk=1; i_rst=1; #2000; i_rst=0; end always #10 i_clk=~i_clk; always@(posedge i_clk) begin II0<=image_buff[jj]; jj<=jj+1; end tops tops_u( .i_clk (i_clk), .i_rst (i_rst), .i_I0 (II0), .o_Ifilter (o_Ifilter) , .o_Ifilter2 (o_Ifilter2) ); integer fout1; initial begin fout1 = $ fopen ( "o_Ifilter.txt" , "w" ); end always @ (posedge i_clk) begin if (jj<=66614) $ fwrite (fout1, "%d\n" ,o_Ifilter); else $ fwrite (fout1, "%d\n" ,0); end integer fout2; initial begin fout2 = $ fopen ( "o_Ifilter2.txt" , "w" ); end always @ (posedge i_clk) begin if (jj<=66614) $ fwrite (fout2, "%d\n" ,o_Ifilter2); else $ fwrite (fout2, "%d\n" ,0); end endmodule |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 一文读懂知识蒸馏
· 终于写完轮子一部分:tcp代理 了,记录一下