基于CNN卷积神经网络的口罩检测识别系统matlab仿真
1.算法运行效果图预览
2.算法运行软件版本
matlab2022a
3.算法理论概述
新型冠状病毒可以通过呼吸道飞沫等方式传播,正确佩戴口罩可以有效切断新冠肺炎病毒的传播途径,是预防感染的有效措施。国内公众场合要求佩戴口罩。而商场、餐饮、地铁等人员密集型的场所对人流量高峰时段的应对措施往往令人力不从心,会消耗大量的人力资源且容易漏检,因此实现口罩人脸检测与识别能够自动检测是否佩戴口罩,减少防疫工作人员工作量。人脸识别核验身份,抓拍的数据可对接公安平台,进行人员布控和人员聚集管控,也适用于公安抓捕遮挡面部的逃犯等安防场景。
CNN是一种专门用于处理图像数据的深度学习结构,它通过卷积层、池化层和全连接层等构成,能够自动学习图像中的特征。在口罩检测识别中,CNN可以学习到佩戴口罩和未佩戴口罩的不同特征,从而实现准确的分类。
基于CNN的口罩检测识别包括数据准备、CNN网络构建、模型训练和预测等步骤。
数据准备: 收集带有口罩和未佩戴口罩的人脸图像数据集,并将其划分为训练集和测试集。
CNN网络构建: 构建一个CNN网络,包括卷积层、池化层、全连接层等。根据问题设定合适的层数和参数。
模型训练: 使用带有标签的训练集对CNN网络进行训练。使用交叉熵损失函数来衡量预测结果和实际标签之间的差异,通过反向传播算法来优化网络参数。
预测: 使用训练好的CNN模型对测试集中的人脸图像进行预测。根据预测结果进行口罩检测和分类。
4.部分核心程序
% 循环处理每张输入图像 for ij = 1:15 if ij<=9% 根据图像序号加载图像 Images = imread(['Input/',num2str(ij),'.jpg']); else Images = imread(['Input/',num2str(ij),'.PNG']); end subplot(3,5,ij); orig_picture = Images; models = step(FDetect, Images);% 使用级联对象检测器检测图像中的人脸 ......................................................................... % 在图像上插入标签和框 Images = insertText(Images,models(kk,1:2),label_text,'FontSize',20,'BoxColor','white','BoxOpacity',0,'TextColor','g'); image(Images); axis off; end label_text% 显示预测结果和绘制边框 if strcmp(label_text,'mask') for kk = 1:size(models,1) rectangle('Position', models(kk,:), 'Linewidth',2,'LineStyle','-','EdgeColor','g'); end title('带口罩'); else for kk = 1:size(models,1) rectangle('Position', models(kk,:), 'Linewidth',2,'LineStyle','-','EdgeColor','y'); end title('没带口罩'); end else image(Images); % 没有检测到人脸,只显示图像 Images = imresize(Images,img_size); axis off end end