基于Qlearning强化学习的路径规划算法matlab仿真
1.算法运行效果图预览
2.算法运行软件版本
MATLAB2022A
3.算法理论概述
路径规划在机器人、自动驾驶等领域中具有重要应用。Q-learning是一种经典的强化学习算法,可以用于解决路径规划问题。本文介绍了基于Q-learning的路径规划算法,该算法可以在未知环境中学习最优路径,具有广泛的应用前景。Q-learning是一种基于值函数的强化学习算法,用于学习最优策略。在路径规划问题中,状态(State)表示机器人所处的位置,动作(Action)表示机器人可以采取的移动方向,奖励(Reward)表示机器人根据采取的动作获得的反馈。Q-learning的目标是学习一个Q值函数,用于评估在给定状态下采取某个动作的预期回报。
3.1 Q值更新规则
在每个时间步,Q-learning根据以下更新规则更新Q值:
3.2 基于Q-learning的路径规划算法设计
在路径规划中,状态可以表示机器人所处的位置坐标,动作可以表示机器人可以向上、下、左、右等方向移动。将Q值初始化为一个小的随机值或零。
可以通过逐渐减小学习率和折扣因子,或者使用不同的策略来调优算法,以实现更好的性能和收敛性。
3.3 Q-learning路径规划流程
基于Q-learning的路径规划算法可以在未知环境中学习最优路径,具有广泛的应用前景。通过合理的参数设置和调优,可以实现高效的路径规划。
4.部分核心程序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | [T,crowd, flow ,R] = Update_M(T,crowd, flow ,width,dis,cor,XY1); last_s = XYs; [Q,XYs] = qlearning(Q,R,XYs,XY1); Reward0 = Reward0 + R(last_s,XYs); figure ; plot (Rewards, '-r>' ,... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.9,0.0]); grid on xlabel ( '迭代次数' ); ylabel ( '奖励值' ); figure ; plot ( path , '-r>' ,... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.9,0.0]); hold on grid on xlabel ( '迭代次数' ); ylabel ( '路线变化' ); |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 一文读懂知识蒸馏
· 终于写完轮子一部分:tcp代理 了,记录一下