基于Qlearning强化学习的路径规划算法matlab仿真

1.算法运行效果图预览

 

 

2.算法运行软件版本

MATLAB2022A

 

 

3.算法理论概述

        路径规划在机器人、自动驾驶等领域中具有重要应用。Q-learning是一种经典的强化学习算法,可以用于解决路径规划问题。本文介绍了基于Q-learning的路径规划算法,该算法可以在未知环境中学习最优路径,具有广泛的应用前景。Q-learning是一种基于值函数的强化学习算法,用于学习最优策略。在路径规划问题中,状态(State)表示机器人所处的位置,动作(Action)表示机器人可以采取的移动方向,奖励(Reward)表示机器人根据采取的动作获得的反馈。Q-learning的目标是学习一个Q值函数,用于评估在给定状态下采取某个动作的预期回报。

 

3.1 Q值更新规则

在每个时间步,Q-learning根据以下更新规则更新Q值:

 

 

 

3.2 基于Q-learning的路径规划算法设计

       在路径规划中,状态可以表示机器人所处的位置坐标,动作可以表示机器人可以向上、下、左、右等方向移动。将Q值初始化为一个小的随机值或零。

 

 

 

      可以通过逐渐减小学习率和折扣因子,或者使用不同的策略来调优算法,以实现更好的性能和收敛性。

 

3.3 Q-learning路径规划流程

 

 

 

        基于Q-learning的路径规划算法可以在未知环境中学习最优路径,具有广泛的应用前景。通过合理的参数设置和调优,可以实现高效的路径规划。

 

 

 

4.部分核心程序

[T,crowd,flow,R] = Update_M(T,crowd,flow,width,dis,cor,XY1);
last_s           = XYs;
[Q,XYs]          = qlearning(Q,R,XYs,XY1);
Reward0          = Reward0 + R(last_s,XYs);
figure;
plot(Rewards,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
 
grid on
xlabel('迭代次数');
ylabel('奖励值');
 
 
figure;
plot(path,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on
grid on
xlabel('迭代次数');
ylabel('路线变化');

  

posted @ 2023-10-10 23:26  简简单单做算法  阅读(278)  评论(0编辑  收藏  举报