基于OFDM通信系统的低复杂度的资源分配算法matlab性能仿真
1.算法运行效果图预览
2.算法运行软件版本
matlab2022a
3.算法理论概述
在OFDM通信系统中,资源分配是一项关键任务,它涉及将可用的频谱资源和功率分配给不同的子载波,以实现高效的数据传输。为了降低计算复杂度并提高系统性能,低复杂度的资源分配算法成为研究的焦点之一。OFDM(正交频分复用)是一种广泛用于无线通信的调制技术,它将高速数据流分成多个低速子流,并将它们调制在不同的正交子载波上。这样可以减少多径干扰,提高频谱利用率。
4.部分核心程序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | %子载波分配 [~, pow2 ] = func_subcarriers_capacity(Ptotal, ch, N_subcarrier, K, noise, gamma ); %功率分配 tic ianp = func_power(ch, pow2 ,N_subcarrier,K,Ptotal,noise, gamma ); time_end2 = toc ; Avg_time2(ij1) = Avg_time2(ij1) + time_end2; for i =1:K pow1_water( i ) = func_waterfilling(shenp( i ),pow1( i ,:).*ch( i ,:)/noise)/N_subcarrier; pow2_water( i ) = func_waterfilling(ianp( i ), pow2 ( i ,:).*ch( i ,:)/noise)/N_subcarrier; end ; cap2=cap2+ sum (pow1_water); cap1=cap1+ sum (pow2_water); if ij2 == 1 cap_m1 = cap_m1 + pow1_water; cap_m2 = cap_m2 + pow2_water; end norm1 = norm1 + norm (pow2_water/ sum (pow2_water) - gamma / sum ( gamma ), inf); norm2 = norm2 + norm (pow1_water/ sum (pow1_water) - gamma / sum ( gamma ), inf); end if ij2 == 1 cap_m1 = cap_m1/(N_ch*MTKL); cap_m2 = cap_m2/(N_ch*MTKL); figure (5); bar ([ gamma / sum ( gamma ); cap_m2/ sum (cap_m2); cap_m1/ sum (cap_m1)] ', ' grouped'); legend ( 'Gamma方法' , 'LINEAR方法' , 'ROOT-FINDING方法' ); end ; end cap1_mean(ij1)=cap1/(N_ch*MTKL); cap2_mean(ij1)=cap2/(N_ch*MTKL); norm1_mean(ij1) = norm1/(N_ch*MTKL); norm2_mean(ij1) = norm2/(N_ch*MTKL); end figure (1) plot (diff_Vuser,cap1_mean, '-bs' ,... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.0,0.0]); hold on plot (diff_Vuser, cap2_mean, '-r>' ,... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.9,0.0]); grid on xlabel ( '用户数' ) ylabel ( '容量 (bit/s/Hz)' ) legend ( 'LINEAR' , 'ROOT-FINDING' ); hold off Avg_time = Avg_time/(N_ch*MTKL); Avg_time2 = Avg_time2/(N_ch*MTKL); figure (3); semilogy (diff_Vuser,Avg_time2, '-bs' ,... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.0,0.0]); hold on semilogy (diff_Vuser,Avg_time, '-r>' ,... 'LineWidth' ,1,... 'MarkerSize' ,6,... 'MarkerEdgeColor' , 'k' ,... 'MarkerFaceColor' ,[0.9,0.9,0.0]); grid on xlabel ( '用户数' ) ylabel ( '平均仿真时间 (s)' ) legend ( 'LINEAR' , 'ROOT-FINDING' ); |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 一文读懂知识蒸馏
· 终于写完轮子一部分:tcp代理 了,记录一下